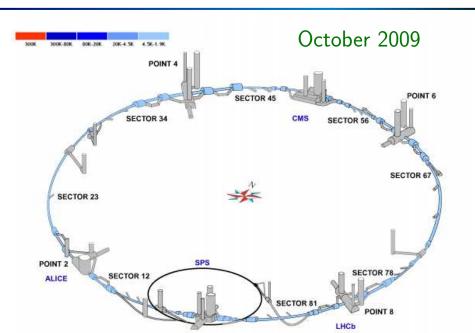
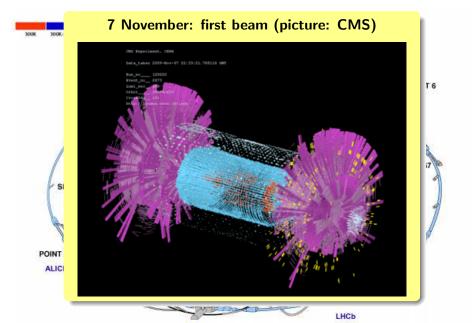
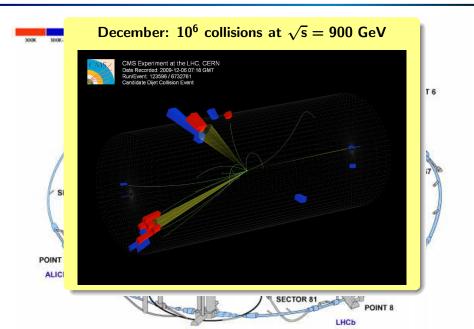
Towards Jetography

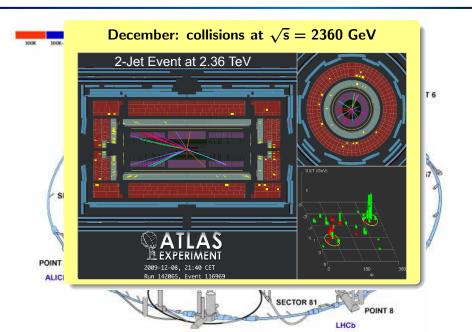
Gavin Salam

LPTHE, CNRS and UPMC (Univ. Paris 6)


Based on work with


Jon Butterworth, Matteo Cacciari, Mrinal Dasgupta, Adam Davison,
Lorenzo Magnea, Juan Rojo, Mathieu Rubin & Gregory Soyez


C. N. Yang Institute for Theoretical Physics
Stony Brook
9 February 2010


Startup (again) for LHC

Startup (again) for LHC

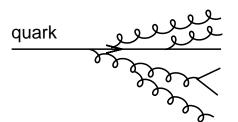
Parton fragmentation

quark

Gluon emission:

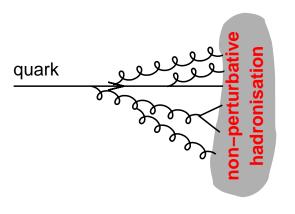
$$\int \alpha_{\rm s} \frac{dE}{F} \frac{d\theta}{\theta} \gg 1$$

$$\alpha_{\rm s} \to 1$$


quark θ

gluon

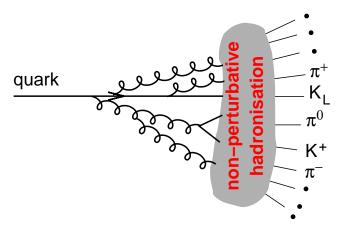
Gluon emission:


$$\int \alpha_{\mathsf{s}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

$$\alpha_{\rm s} \to 1$$


$$\int \alpha_{\mathsf{s}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

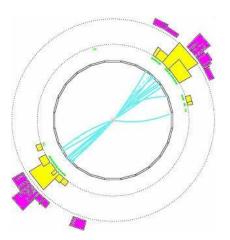
$$\alpha_{\mathsf{s}} \to 1$$


$$\int \alpha_{\rm s} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

$$\alpha_{\rm s} o 1$$

$$\int \alpha_{\mathsf{S}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

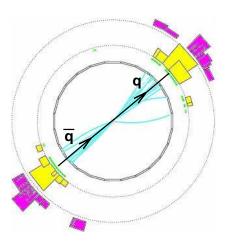
$$\alpha_{\mathsf{s}} o 1$$



$$\int \alpha_{\mathsf{s}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

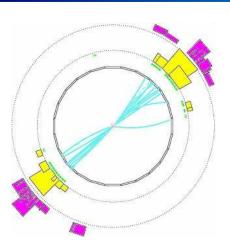
At low scales:

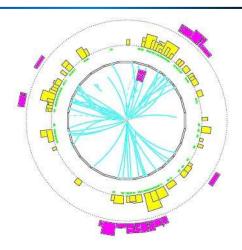
$$\alpha_{\text{s}} \to 1$$


This is a jet

Jets are what we see. Clearly(?) 2 jets here

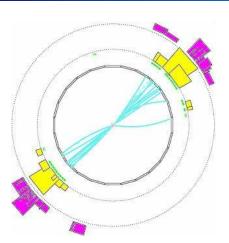
How many jets do you see?


Do you really want to ask yourself this question for 10⁹ events?

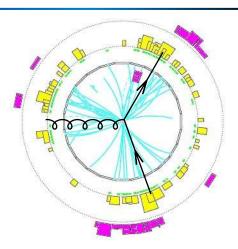

Jets are what we see. Clearly(?) 2 jets here

How many jets do you see?

Do you really want to ask yourself this question for 10° events?

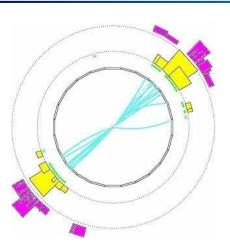


Jets are what we see. Clearly(?) 2 jets here

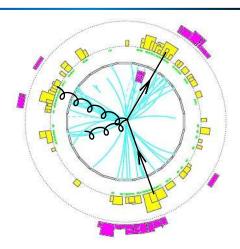


How many jets do you see?

Do you really want to ask yourself this question for 10^9 events?

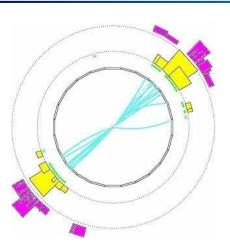


Jets are what we see. Clearly(?) 2 jets here

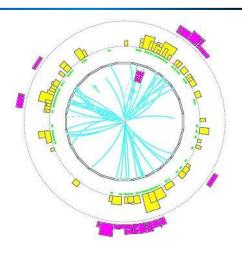


How many jets do you see?

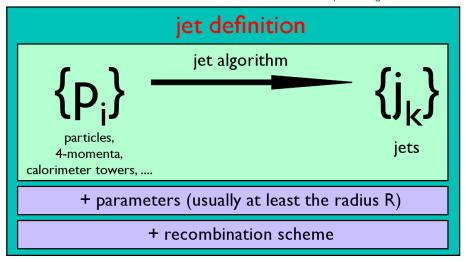
Do you really want to ask yourself this question for 10^9 events?

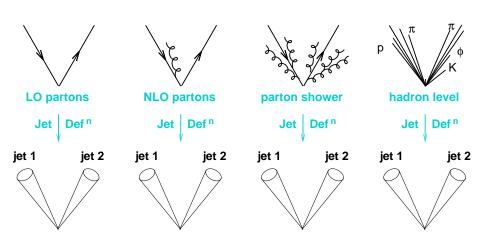


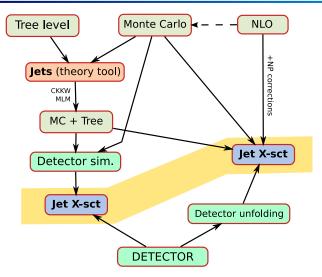
Jets are what we see. Clearly(?) 2 jets here



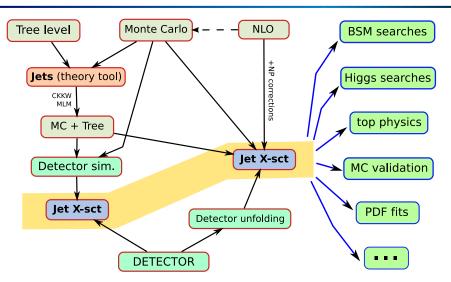
How many jets do you see?


Do you really want to ask yourself this question for 10^9 events?


Jets are what we see. Clearly(?) 2 jets here


How many jets do you see? Do you really want to ask yourself this question for 10^9 events?

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate



Projection to jets should be resilient to QCD effects

Jet (definitions) provide central link between expt., "theory" and theory

And jets are an input to almost all analyses

Jet (definitions) provide central link between expt., "theory" and theory

And jets are an input to almost all analyses

- ▶ The different kinds of jet algorithm
- ► The historical problems with them ("Snowmass criteria") and some of the solutions

 Speed, infrared safety
- Understanding the physics of jet algorithms the momentum of a jet v. the momentum of a "parton"
- ▶ Doing better physics *with* jets

Dijet mass reconstruction Low-mass Higgs-boson search

What jet algorithms are out there? 2 broad classes:

1. sequential recombination

"bottom up", e.g. k_t , preferred by many theorists

2. cone type

"top down", preferred by many experimenters

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91-'93

Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ► Recombine
- Repeat

Bottom-up jets:

Sequential recombination

(attempt to invert QCD branching)

$$\Delta \kappa_{ij} = (\varphi_i - \varphi_j) + (y_i - y_j)^2$$

riables

- ▶ rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- ► Repeat

NB: hadron collider variables

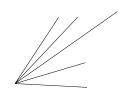
$$\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$$
Pranidity $y_i - \frac{1}{2} \ln \frac{E_i + p_{zi}}{2}$

- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- ► Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat


NB: hadron collider variables

- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91-'93 Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

NB: hadron collider variables

 $ightharpoonup \Delta R_{ii}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$

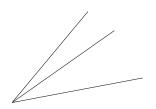
rapidity
$$v_i = \frac{1}{2} \ln \frac{E_i + p_z}{2}$$

- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{F_i p_{zi}}$
- $ightharpoonup \Delta R_{ii}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91-'93 Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat


NB: hadron collider variables

- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91-'93 Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

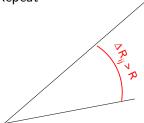
NB: hadron collider variables

- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91-'93 Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat


NB: hadron collider variables

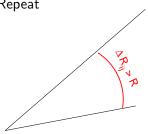
- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- ► Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

NB: hadron collider variables


$$\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$$

- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$
- $ightharpoonup \Delta R_{ij}$ is boost invariant angle

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- ▶ Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- ▶ Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

NB: hadron collider variables

 $ightharpoonup \Delta R_{ii}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$

rapidity
$$y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$$


► ΔR_{ii} is boost invariant angle

R sets minimal interjet angle

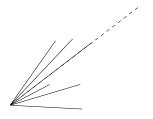
NB: d_{ij} distance \leftrightarrow QCD branching probability $\sim \alpha_s \frac{dk_{tj}^2 dR_{ij}^2}{d_{ii}}$

Tevatron & ATLAS cone algs have two main steps:

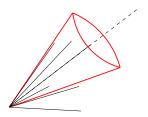
- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions

Cones with Split Merge (SM)

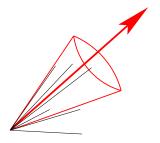
Tevatron & ATLAS cone algs have two main steps:


- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- Resolve cases of overlapping stable cones

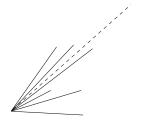
Tevatron & ATLAS cone algs have two main steps:


- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

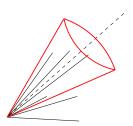

Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones

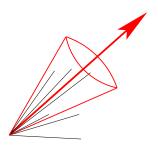

Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- Resolve cases of overlapping stable cones
 - By running a 'split-merge' procedur

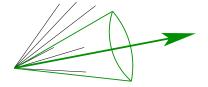
Tevatron & ATLAS cone algs have two main steps:


- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones
 - By running a 'split-merge' procedure

Tevatron & ATLAS cone algs have two main steps:

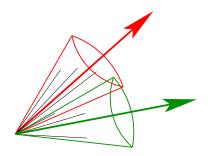

- Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents

 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones


Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:


- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents

 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents

 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- ▶ Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

What seeds do you use?

- ► All particles above some threshold

 Done originally [JetClu, Atlas]
- Additionally from 'midpoints' between stable cones
 Midpoint cone [Tevatron Run II

Tevatron & ATLAS cone algs have two main steps:

- ► Find some/all stable cones
 - ≡ cone pointing in same direction as the momentum of its contents
 Found by iterating from some initial seed directions
- Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

What seeds do you use?

- ► All particles above some threshold

 Done originally [JetClu, Atlas]
- Additionally from 'midpoints' between stable cones
 Midpoint cone [Tevatron Run II]

Readying jet "technology" for the LHC era

[a.k.a. satisfying Snowmass]

Snowmass accords

Snowmass Accord (1990):

FERMILAB-Conf-90/249-E

Toward a Standardization of Jet Definitions:

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- Simple to implement in the theoretical calculation;
- Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Snowmass accords

Snowmass Accord (1990):

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions:

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation:
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;

Property 1 \Leftrightarrow **speed.** (+other aspects)

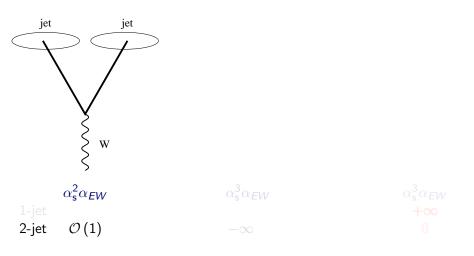
- ▶ LHC events may have up to N = 4000 particles (at high-lumi)
- ▶ Sequential recombination algs. (k_t) slow, $\sim N^3 \rightarrow 60s$ for N=4000, not practical for $\mathcal{O}(10^9)$ events

Can be reduced to N In N $(60 s \rightarrow 20 ms)$ Cacciari & GPS '05 + CGAL

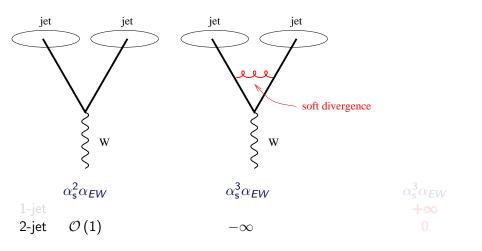
Snowmass accords

Snowmass Accord (1990):

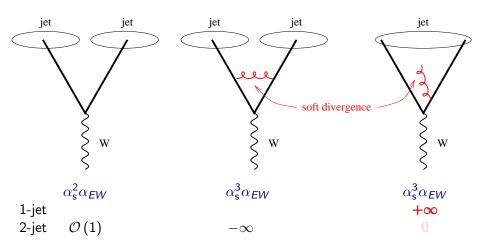
FERMILAB-Conf-90/249-E


Toward a Standardization of Jet Definitions

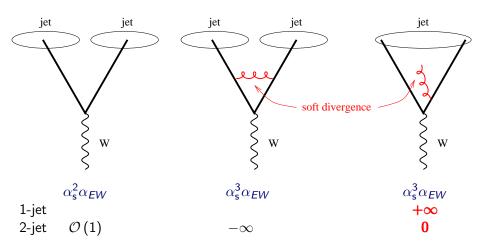
Several important properties that should be met by a jet definition are [3]:


- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- Property 4 = Infrared and Collinear (IRC) Safety. It helps ensure:
- ► Soft (low-energy) emissions & collinear splittings don't change jets
- **Each** order of perturbation theory is smaller than previous (at high p_t)

Wasn't satisfied by the cone algorithms



With these (& most) cone algorithms, perturbative infinities fail to cancel at some order ≡ IR unsafety


With these (& most) cone algorithms, perturbative infinities fail to cancel at some order **■ IR unsafety**

With these (& most) cone algorithms, perturbative infinities fail to cancel at some order ≡ IR unsafety

Cone IR issues

JetClu (& Atlas Cone) in Wjj @ NLO

With these (& most) cone algorithms, perturbative infinities fail to cancel at some order \equiv IR unsafety

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \rightarrow \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t/\Lambda \rightarrow \alpha_{\rm s}^2 + \underbrace{\alpha_{\rm s}^3 + \alpha_{\rm s}^3}_{\rm BOTH \ WASTED}$$

Among consequences of IR unsafety:

	Last i			
	JetClu, ATLAS	MidPoint	CMS it. cone	Known at
	LO	NLO	NLO	$NLO \ (o NNLO)$
W/Z + 1 jet	LO	NLO	NLO	NLO
		LO	LO	NLO [nlojet++]
W/Z + 2 jets		LO	LO	NLO [MCFM]

NB: 50,000,000\$/£/CHF/€ investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC

And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \rightarrow \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t/\Lambda \rightarrow \alpha_{\rm s}^2 + \underbrace{\alpha_{\rm s}^3 + \alpha_{\rm s}^3}_{\rm BOTH \ WASTED}$$

Among consequences of IR unsafety:

	Last ı			
	JetClu, ATLAS	MidPoint	CMS it. cone	Known at
	cone [IC-SM]	[IC _{mp} -SM]	[IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (→ NNLO)
W/Z + 1 jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
W/Z + 2 jets	none	LO	LO	NLO [MCFM]
$m_{\rm jet}$ in $2j + X$	none	none	none	LO

NB: 50,000,000\$/£/CHF/€ investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC

extraction of cross sections, extraction of parameters

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \rightarrow \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t/\Lambda \rightarrow \alpha_{\rm s}^2 + \underbrace{\alpha_{\rm s}^3 + \alpha_{\rm s}^3}_{
m BOTH \ WASTED}$$

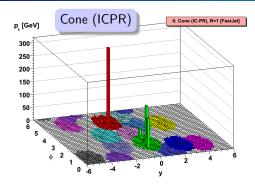
Among consequences of IR unsafety:

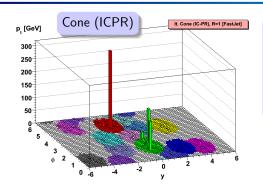
	Last i			
	JetClu, ATLAS	MidPoint	CMS it. cone	Known at
	cone [IC-SM]	[IC _{mp} -SM]	[IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (→ NNLO)
W/Z + 1 jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
W/Z + 2 jets	none	LO	LO	NLO [MCFM]
$m_{\rm jet}$ in $2j + X$	none	none	none	LO

NB: 50,000,000\$/£/CHF/€ investment in NLO

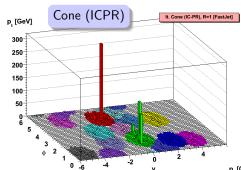
Multi-jet contexts much more sensitive: ubiquitous at LHC

And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters

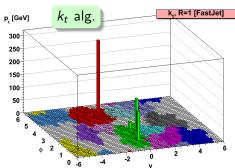

How do we solve cone IR safety problems?

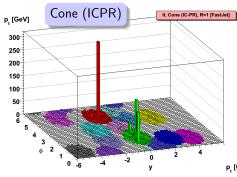


GPS & Soyez '07 Same family as Tev. Run II alg

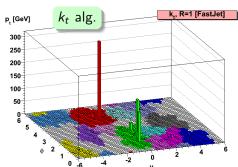

Invent "cone-like" alg.

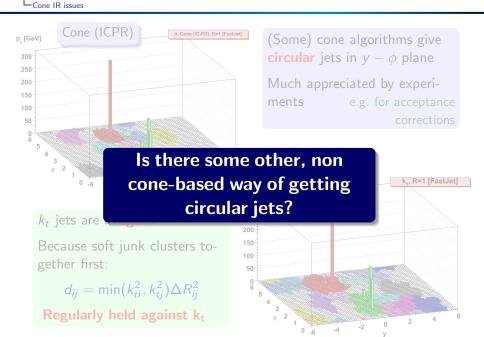
anti-kt




(Some) cone algorithms give circular jets in $y-\phi$ plane Much appreciated by experiments e.g. for acceptance corrections

(Some) cone algorithms give circular jets in $y-\phi$ plane Much appreciated by experiments e.g. for acceptance corrections



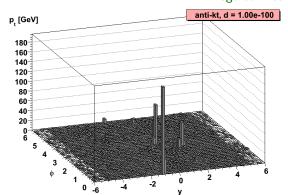

(Some) cone algorithms give circular jets in $y-\phi$ plane Much appreciated by experiments e.g. for acceptance corrections

k_t jets are **irregular**

Because soft junk clusters together first:

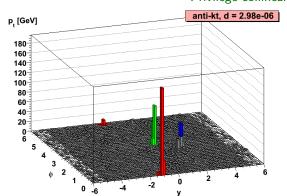
$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2$$

Regularly held against $\mathbf{k_t}$



$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

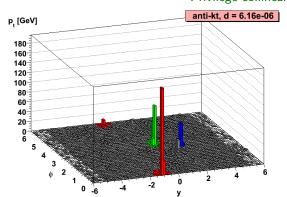
Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence Cacciari, GPS & Soyez '08


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

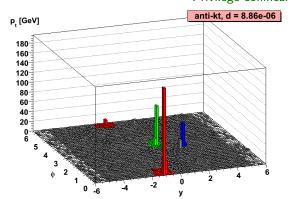
Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

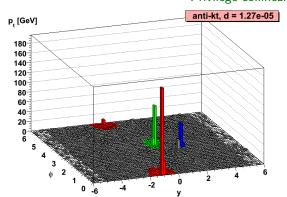
Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

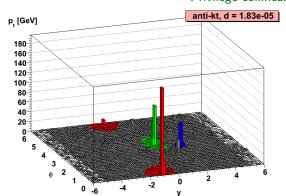
Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

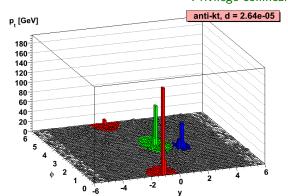
Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

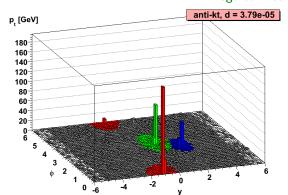

$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

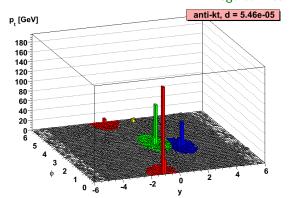
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$


Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

rgence over soft divergence Cacciari, GPS & Soyez '08

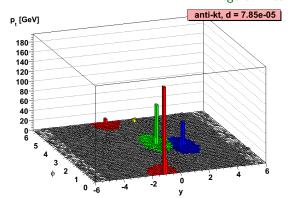
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence



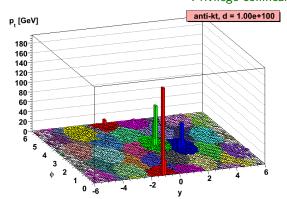
rgence over soft divergence Cacciari, GPS & Soyez '08

$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$


Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

Cacciari, GPS & Soyez '08

$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$


Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

rgence over soft divergence Cacciari, GPS & Soyez '08

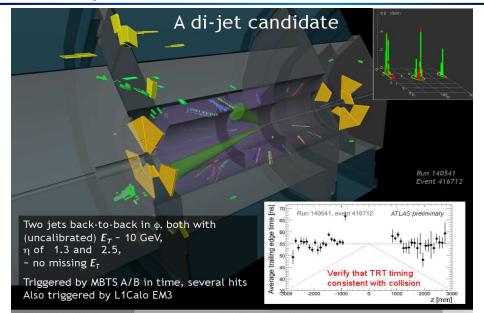
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

anti-k_t gives cone-like jets without using stable cones

Cacciari, GPS & Soyez '08

A full set of IRC-safe jet algorithms


Generalise inclusive-type sequential recombination with

$$d_{ij} = \min(k_{ti}^{2\mathbf{p}}, k_{ti}^{2\mathbf{p}}) \Delta R_{ij}^2 / R^2$$
 $d_{iB} = k_{ti}^{2\mathbf{p}}$

	Alg. name	Comment	time
p = 1	k_t	Hierarchical in rel. k_t	
	CDOSTW '91-93; ES '93		N In N exp.
p = 0	Cambridge/Aachen	Hierarchical in angle	
	Dok, Leder, Moretti, Webber '97	Scan multiple R at once	N In N
	Wengler, Wobisch '98	\leftrightarrow QCD angular ordering	
p = -1	anti- k_t Cacciari, GPS, Soyez '08	Hierarchy meaningless, jets	
	\sim reverse- k_t Delsart	like CMS cone (IC-PR)	$N^{3/2}$
SC-SM	SISCone	Replaces JetClu, ATLAS	
	GPS Soyez '07 + Tevatron run II '00	MidPoint (xC-SM) cones	$N^2 \ln N \exp$.

All these algorithms [& much more] coded in (efficient) C++ at http://fastjet.fr/ (Cacciari, GPS & Soyez '05-'09)

ATLAS: first dijet event, with anti- k_t

CMS: first dijet event, with anti- k_t

Snowmass
A collection of algs

Snowmass is solved But it was a problem from the 1990s What are the problems we *should* be

trying to solve for LHC?

Which jet definition(s) for LHC?

```
Choice of algorithm (k_t, SISCone, ...)
Choice of parameters (R, ...)
```

Can we address this question scientifically?

Jetography

Which jet definition(s) for LHC?

Choice of algorithm $(k_t, SISCone, ...)$ Choice of parameters (R, ...)

Can we address this question scientifically?

Jetography

<u>Jet definitions</u> differ mainly in:

- 1. How close two particles must be to end up in same jet [discussed in the '90s, e.g. Ellis & Soper]
 - 2. How much perturbative radiation is lost from a jet [indirectly discussed in the '90s (analytic NLO for inclusive jets)]
 - 3. How much non-perturbative contamination (hadronisation, UE, pileup) a jet receives [partially discussed in '90s Korchemsky & Sterman '95, Seymour '97

$\underbrace{\text{Jet definitions}}_{\text{alg } + R} \text{ differ mainly in:}$

- 1. How close two particles must be to end up in same jet [discussed in the '90s, e.g. Ellis & Soper]
 - 2. How much perturbative radiation is lost from a jet [indirectly discussed in the '90s (analytic NLO for inclusive jets)]
 - How much non-perturbative contamination (hadronisation, UE, pileup) a jet receives
 [partially discussed in '90s — Korchemsky & Sterman '95, Seymour '97

<u>Jet definitions</u> differ mainly in:

- 1. How close two particles must be to end up in same jet [discussed in the '90s, e.g. Ellis & Soper]
 - 2. How much perturbative radiation is lost from a jet [indirectly discussed in the '90s (analytic NLO for inclusive jets)]
- 3. How much non-perturbative contamination (hadronisation, UE, pileup) a jet receives [partially discussed in '90s Korchemsky & Sterman '95, Seymour '97]

The question's dangerous: a "parton" is an ambiguous concept

Three limits can help you:

- ► Threshold limit e.g. de Florian & Vogelsang '07
- \triangleright Parton from color-neutral object decay (Z')
- ► Small-*R* (radius) limit for jet

One simple result

$$\frac{\langle p_{t,jet} - p_{t,parton} \rangle}{p_t} = \frac{\alpha_s}{\pi} \ln R \times \begin{cases} 1.01 C_F & quarks \\ 0.94 C_A + 0.07 n_f & gluons \end{cases} + \mathcal{O}\left(\alpha_s\right)$$

only $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ depends on algorithm & process cf. Dasgupta, Magnea & GPS '07

Jet p_t v. parton p_t : hadronisation?

Hadronisation: the "parton-shower" \rightarrow hadrons transition

Method:

- lacktriangleright "infrared finite $lpha_{
 m s}$ " à la Dokshitzer & Webber '95
- **prediction** based on e^+e^- event shape data
- prediction based on e e event snape data

► could have been deduced from old work Korchemsky & Sterman '95 Seymour '97

Main result

$$\langle p_{t,jet} - p_{t,parton-shower} \rangle \simeq - \frac{0.4 \text{ GeV}}{R} imes \left\{ egin{array}{ll} C_F & \textit{quarks} \\ C_A & \textit{gluons} \end{array}
ight.$$

cf. Dasgupta, Magnea & GPS '07 coefficient holds for anti- k_t ; see Dasgupta & Delenda '09 for k_t alg.

Underlying Event (UE)

"Naive" prediction (UE \simeq colour dipole between pp):

$$\Delta p_t \simeq 0.4 \; {\sf GeV} imes rac{R^2}{2} imes \left\{ egin{array}{ll} C_F & qar q \; {\sf dipole} \ C_A & {\sf gluon \; dipole} \end{array}
ight.$$

DWT Pythia tune or ATLAS Jimmy tune tell your

$$\Delta p_t \simeq {f 10-15~GeV} imes {rac{R^4}{2}}$$

This big coefficient motivates special effort to understand interplay between jet algorithm and UE: "jet areas"

How does coefficient depend on algorithm? How does it depend on jet p_t ? How does it fluctuate? cf. Cacciari, GPS & Soyez '08

"Naive" prediction (UE \simeq colour dipole between pp):

$$\Delta p_t \simeq 0.4 \; {\sf GeV} imes rac{R^2}{2} imes \left\{ egin{array}{ll} C_F & qar q \; {\sf dipole} \ C_A & {\sf gluon \; dipole} \end{array}
ight.$$

DWT Pythia tune or ATLAS Jimmy tune tell you:

$$\Delta p_t \simeq {f 10} - {f 15}~{f GeV} imes rac{R^2}{2}$$

This big coefficient motivates special effort to understand interplay between jet algorithm and UE: "jet areas"

How does coefficient depend on algorithm? How does it depend on jet p_t ? How does it fluctuate? cf. Cacciari, GPS & Soyez '08

Towards Jetography, G. Salam (p. 28)

Physics of jets

Jet-properties summary

 $\Delta p_{t,PT} \simeq \frac{\alpha_s C_i}{\pi} \times$

area = $\pi R^2 \times$

 $\Delta p_{t,hadr} \simeq -rac{0.4~{
m GeV}\,{\it C_i}}{R} imes$

 $\alpha(\Omega_0)$

ightharpoonup anti- k_t : area is constant (circular jets)

multijets), area is smaller (good for UE)

reach

Jet algorithm properties: summary k_t Cam/Aachen anti- k_t SISCone

R

ln R

 $(1 + \frac{p_{t2}}{p_{t2}})R$

In 1.35R

0.25

0.07

R

ln R

 0.81 ± 0.26

	$+\pi R^2 \frac{c_i}{\pi b_0} \ln \frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} \times$	0.52 ± 0.41	0.08 ± 0.19	0	0.12 ±				
In words:									
$ ightharpoonup k_t$: area fluctuates a lot, depends on p_t (bad for UE)									
\triangleright Cam/Aachen: area fluctuates somewhat, depends less on p_t									

▶ SISCone: reaches far for hard radiation (good for resolution, bad for

R

ln R

0.7

 0.81 ± 0.28

Can we benefit from this understanding in our use of jets?

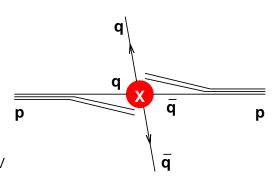
Jet momentum significantly affected by RSo what R should we choose?

Examine this in context of reconstruction of dijet resonance

PT radiation:

$$q: \quad \langle \Delta p_t \rangle \simeq \frac{\alpha_{\sf s} C_F}{\pi} p_t \ln R$$

$$\frac{\text{Hadronisation:}}{q: \quad \langle \Delta p_t \rangle \simeq -\frac{C_F}{R} \cdot 0.4 \text{ GeV}}$$


Underlying event:

$$\overline{q,g: \langle \Delta p_t \rangle \simeq \frac{R^2}{2}} \cdot 2.5 - 15 \text{ GeV}$$

Minimise fluctuations in p_t

Use crude approximation: $\langle \Delta p_t^2 \rangle \simeq \langle \Delta p_t \rangle^2$

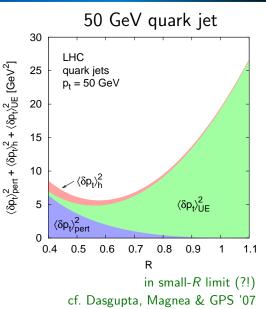
E.g. to reconstruct $m_X \sim (p_{ta} + p_{t\bar{a}})$

PT radiation:

└ Diiet resonances

$$q: \quad \langle \Delta p_t \rangle \simeq rac{lpha_{\sf s} C_{\sf F}}{\pi} p_t \ln R$$

Hadronisation:


$$q: \quad \langle \Delta p_t
angle \simeq -rac{\mathcal{C}_F}{R} \cdot 0.4 \; \mathsf{GeV}$$

Underlying event:

$$\overline{q,g: \langle \Delta p_t \rangle \simeq \frac{R^2}{2}} \cdot 2.5 - 15 \text{ GeV}$$

Minimise fluctuations in *pt*Use crude approximation:

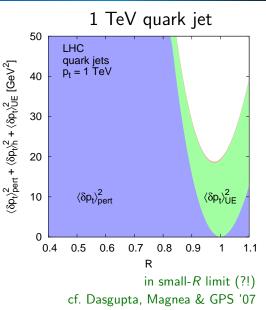
 $\langle \Delta p_t^2 \rangle \simeq \langle \Delta p_t \rangle^2$

PT radiation:

└ Diiet resonances

$$q: \quad \langle \Delta p_t \rangle \simeq rac{lpha_{\mathsf{s}} C_{\mathsf{F}}}{\pi} p_t \ln R$$

Hadronisation:


$$q: \quad \langle \Delta p_t \rangle \simeq - rac{C_F}{R} \cdot 0.4 \; {
m GeV}$$

Underlying event:

$$\overline{q,g: \langle \Delta p_t \rangle \simeq \frac{R^2}{2}} \cdot 2.5 - 15 \text{ GeV}$$

Minimise fluctuations in p_t

Use crude approximation: $\langle \Delta p_t^2 \rangle \simeq \langle \Delta p_t \rangle^2$

1 TeV quark jet

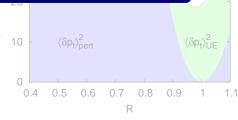
PT radiation:

 $q: \langle \Delta p_t \rangle \simeq \frac{\alpha_s C_F}{r} p_t \ln R$

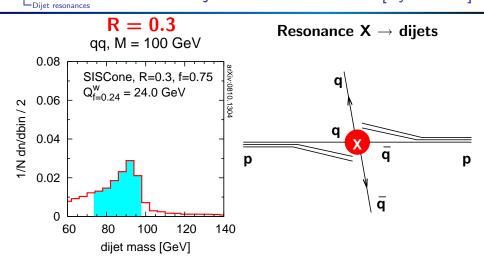
At low p_t , small R limits relative impact of UE

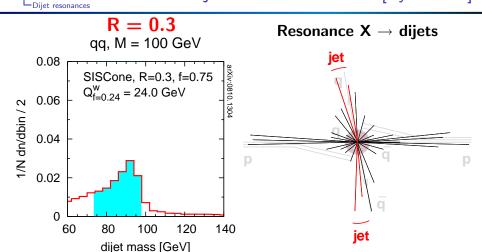
q:

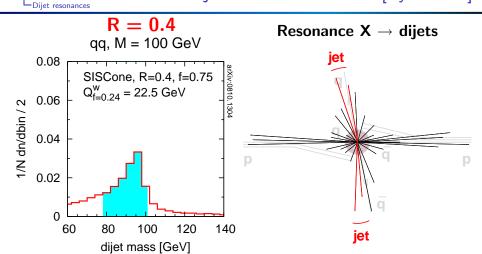
Had

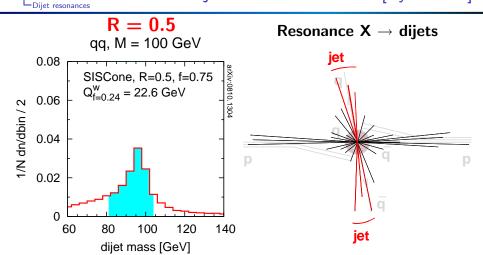

At high p_t , perturbative effects dominate over non-perturbative $\to R_{\textit{best}} \sim 1$.

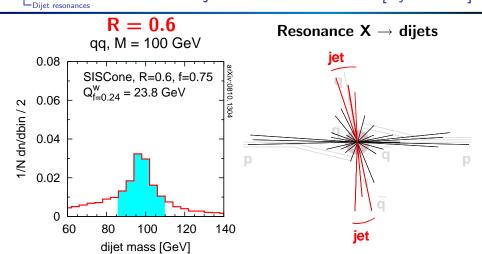
Underlying event:

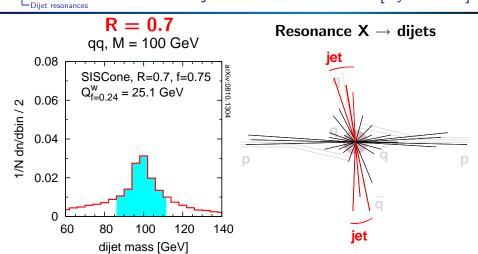

$$q,g: \langle \Delta p_t \rangle \simeq \frac{R^2}{2} \cdot 2.5 - 15 \text{ GeV}$$

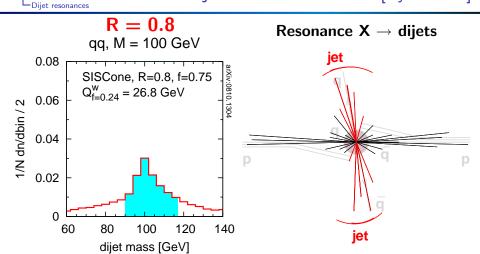

Minimise fluctuations in *p_t*Use crude approximation:

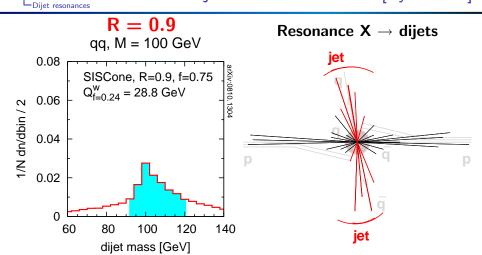

$$\langle \Delta p_t^2
angle \simeq \langle \Delta p_t
angle^2$$

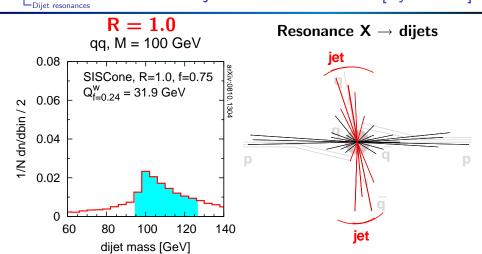


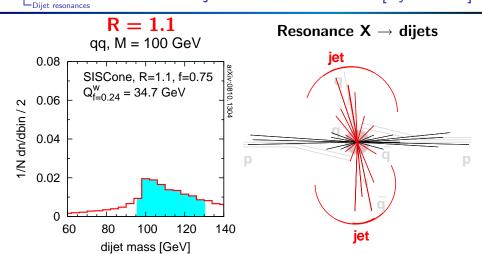

cf. Dasgupta, Magnea & GPS '07

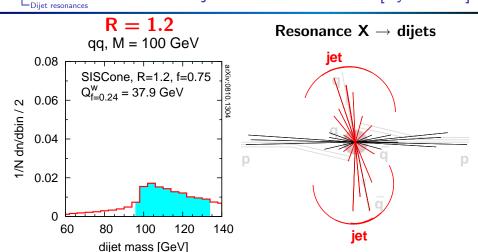


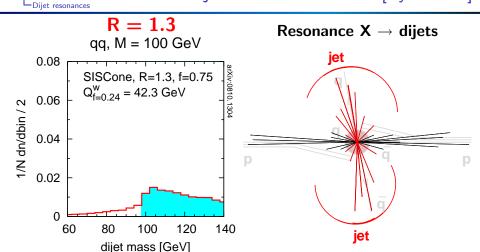


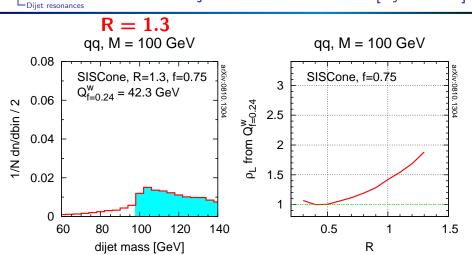


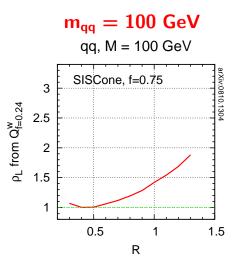






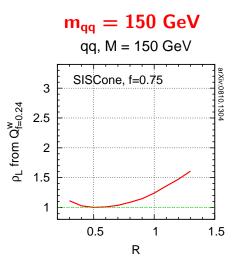





Dijet mass: scan over R [Pythia 6.4]

Dijet mass: scan over *R* [Pythia 6.4]

After scanning, summarise "quality" v. R. Minimum ≡ BEST picture not so different from crude analytical estimate

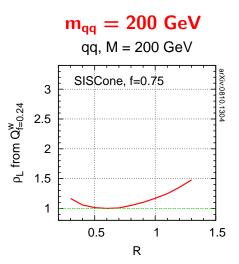

Best R is at minimum of curve

▶ Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish R values

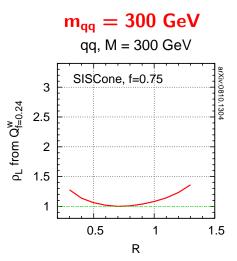

Best R is at minimum of curve

▶ Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction

NB: current analytics too crud

involve running with fixed smallish R values

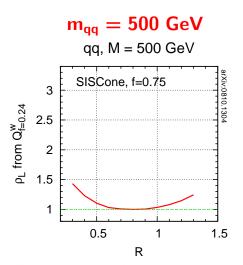

Best R is at minimum of curve

▶ Best R depends strongly on mass of system

 Increases with mass, just like crude analytical prediction

NB: current analytics too crud

BUT: so far, LHC's plans involve running with fixed smallish R values

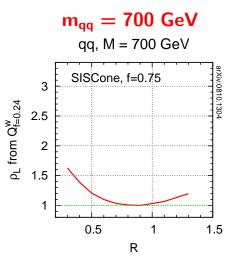

Best *R* is at minimum of curve

▶ Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction

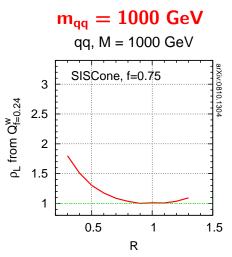
NB: current analytics too crud

BUT: so far, LHC's plans involve running with fixed smallish R values


Best R is at minimum of curve

▶ Best R depends strongly on mass of system

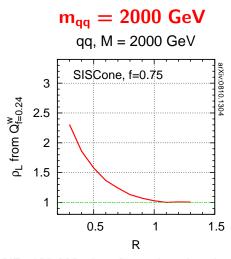
 Increases with mass, just like crude analytical prediction


NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish R values

Best R is at minimum of curve

- ▶ Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crue
- BUT: so far, LHC's plans involve running with fixed smallish R values
 - e.g. CMS arXiv:0807.4961



Best R is at minimum of curve

- ▶ Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

involve running with fixed smallish *R* values

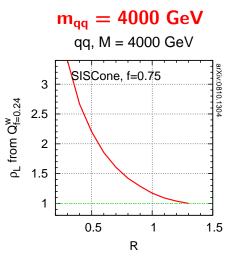
e.g. CMS arXiv:0807.4961

Best *R* is at minimum of curve

- ▶ Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

involve running with fixed smallish R values

e.g. CMS arXiv:0807.4961

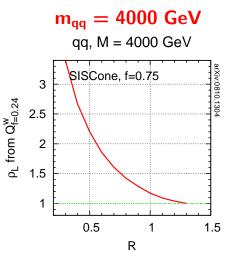


Best R is at minimum of curve

- Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

involve running with fixed smallish R values

e.g. CMS arXiv:0807.4961

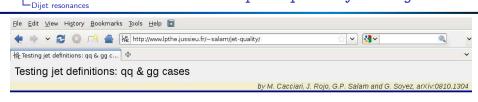


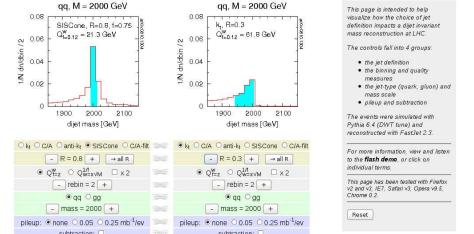
Best R is at minimum of curve

- Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

e.g. CMS arXiv:0807.4961


Best *R* is at minimum of curve


- ▶ Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

e.g. CMS arXiv:0807.4961

http://quality.fastjet.fr/

The dijet mass is a classic jets analysis.

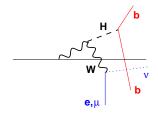
But LHC also opens up characteristically new kinematic regions, because $\sqrt{s} \gg m_{EW}$.

We can and should make use of this

Illustrated in next slides, for Higgs search with $m_H=115~{
m GeV},~H
ightarrow b ar{b}$

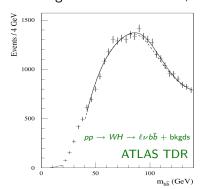
E.g.: WH/ZH search channel @ LHC

▶ Signal is $W \to \ell \nu$, $H \to b\bar{b}$.


- Studied e.g. in ATLAS TDR $\,$
- ▶ Backgrounds include $Wbar{b},\ tar{t} o \ell
 u bar{b} jj,\ \dots$

Difficulties, e.g.

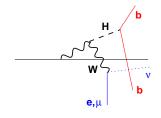
- ▶ $gg \rightarrow t\bar{t}$ has $\ell\nu b\bar{b}$ with same intrinsic mass scale, but much higher partonic luminosity
- ► Need exquisite control of bkgd shape


Try a long shot?

- ▶ Go to high p_t (p_{tH} , p_{tV} > 200 GeV)
- Lose 95% of signal, but more efficient?
- Maybe kill $t\bar{t}$ & gain clarity?

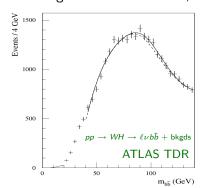
E.g.: WH/ZH search channel @ LHC

- ▶ Signal is $W \to \ell \nu$, $H \to b\bar{b}$.
- Backgrounds include $Wbar{b},\ tar{t} o \ell \nu bar{b}ii,\ \ldots$



Difficulties, e.g.

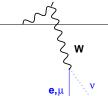
- $ightharpoonup gg
 ightharpoonup tar{t}$ has $\ell \nu bar{b}$ with same intrinsic mass scale, but much higher partonic luminosity
- ► Need exquisite control of bkgd shape


Try a long shot?

- ▶ Go to high p_t ($p_{tH}, p_{tV} > 200$ GeV)
- Lose 95% of signal, but more efficient?
- ▶ Maybe kill $t\bar{t}$ & gain clarity?

Studied e.g. in ATLAS TDR

- ▶ Signal is $W \to \ell \nu$, $H \to b\bar{b}$.
- Backgrounds include $Wb\bar{b}$, $t\bar{t} \rightarrow \ell \nu b\bar{b}jj$, . . .



Difficulties, e.g.

- ▶ $gg \rightarrow t\bar{t}$ has $\ell\nu b\bar{b}$ with same intrinsic mass scale, but much higher partonic luminosity
- Need exquisite control of bkgd shape

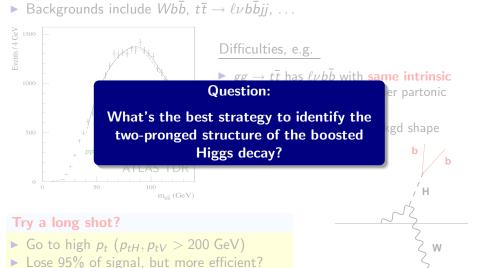
Try a long shot?

- Go to high p_t ($p_{tH}, p_{tV} > 200 \text{ GeV}$)
- ► Lose 95% of signal, but more efficient?
- ► Maybe kill tt̄ & gain clarity?

Studied e.g. in ATLAS TDR

☐Boosted heavy particles

E.g.: WH/ZH search channel @ LHC


▶ Signal is $W \to \ell \nu$, $H \to b\bar{b}$.

 \blacktriangleright Maybe kill $t\bar{t}$ & gain clarity?

 $1 \rightarrow DD$.

Studied e.g. in ATLAS TDR

e, μ

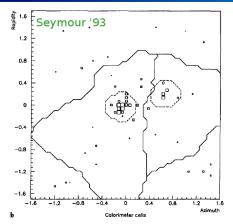
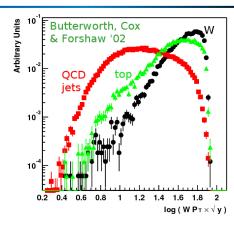



Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and b with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use k_t jet-algorithm's hierarchy to split the jets

Use k_t alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:

$$d_{ij}^{k_t} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2$$

Y-splitter

only partially rrelated with mass

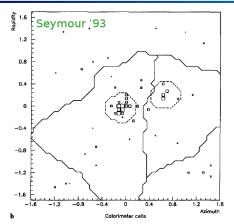
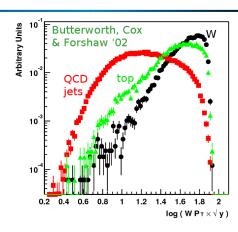



Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and b with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use k_t jet-algorithm's hierarchy to split the jets

Use k_t alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:

$$d_{ij}^{k_t} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2$$

Y-splitter

only partially correlated with mass

Our tool

[in FastJet]

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98

Work out $\Delta R_{ii}^2 = \Delta y_{ii}^2 + \Delta \phi_{ii}^2$ between all pairs of objects i, j;

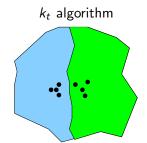
Recombine the closest pair;

Repeat until all objects separated by $\Delta R_{ii} > R$.

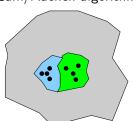
Gives "hierarchical" view of the event; work through it backwards to analyse jet

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98

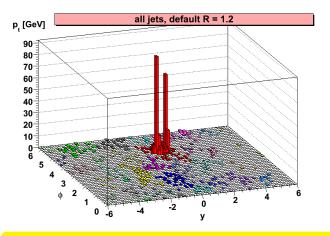

Work out $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2$ between all pairs of objects i, j;

Recombine the closest pair;


Repeat until all objects separated by $\Delta R_{ij} > R$.

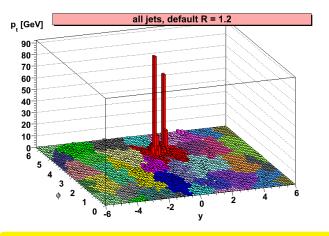
[in FastJet]

Gives "hierarchical" view of the event; work through it backwards to analyse jet



Allows you to "dial" the correct R to keep perturbative radiation, but throw out UE

SIGNAL


Zbb BACKGROUND

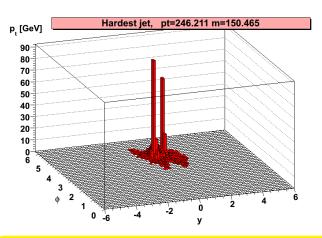
Cluster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS '08

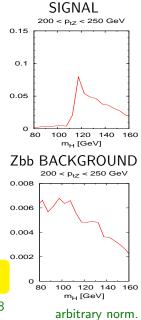
arbitrary norm.

SIGNAL

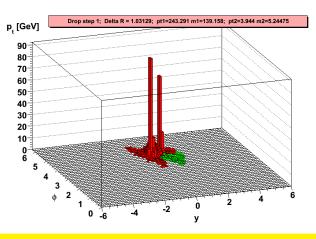
Zbb BACKGROUND

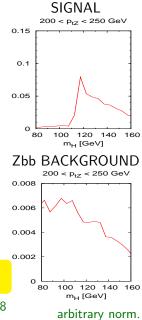

Fill it in, \rightarrow show jets more clearly

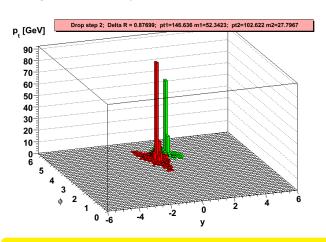
Butterworth, Davison, Rubin & GPS '08

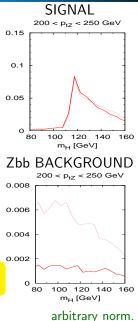

arbitrary norm.

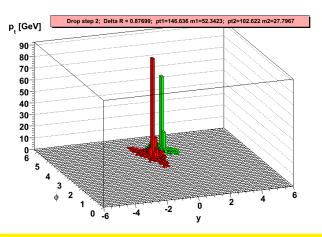
Towards Jetography, G. Salam (p. 39) Physics with jets $pp \to ZH \to \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV Boosted heavy particles

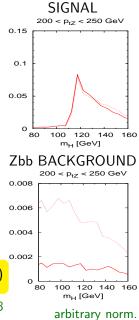

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

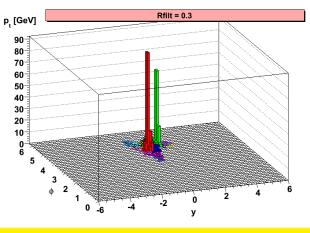

Consider hardest jet, m = 150 GeV

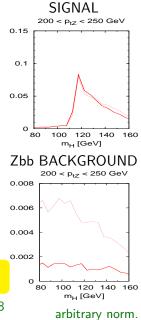

Towards Jetography, G. Salam (p. 39) Physics with jets $pp \to ZH \to \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV Boosted heavy particles


split: m = 150 GeV, $\frac{\max(m_1, m_2)}{m} = 0.92 \rightarrow \text{repeat}$

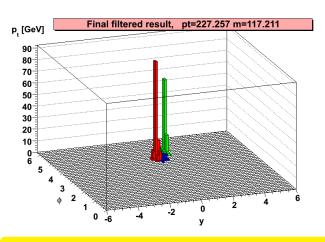

Towards Jetography, G. Salam (p. 39) Physics with jets $pp \to ZH \to \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV Boosted heavy particles


split: $m=139~{
m GeV}$, $\frac{{
m max}(m_1,m_2)}{m}=0.37
ightarrow {
m mass drop}$

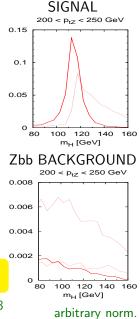

Towards Jetography, G. Salam (p. 39) Physics with jets $pp \to ZH \to \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV Boosted heavy particles



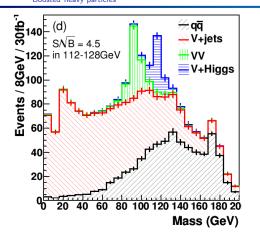
Towards Jetography, G. Salam (p. 39) Physics with jets $pp \to ZH \to \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV Boosted heavy particles


 $R_{filt} = 0.3$

Butterworth, Davison, Rubin & GPS '08

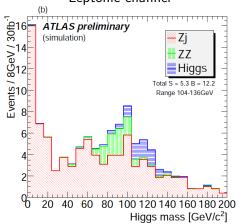


Towards Jetography, G. Salam (p. 39) Physics with jets $pp \to ZH \to \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV Boosted heavy particles


Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

 $R_{filt} = 0.3$: take 3 hardest, $\mathbf{m} = 117 \text{ GeV}$

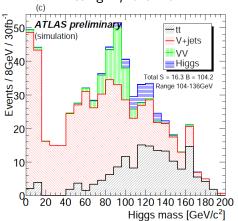
combine HZ and HW, $p_t > 200 \text{ GeV}$



- ► Take $Z \to \ell^+ \ell^-$, $Z \to \nu \bar{\nu}$, $W \to \ell \nu$ $\ell = e, \mu$
- $ightharpoonup p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_V|, |\eta_H| < 2.5$
- ► Assume real/fake *b*-tag rates of 0.6/0.02.
- Some extra cuts in HW channels to reject tt̄.
- ▶ Assume $m_H = 115$ GeV.

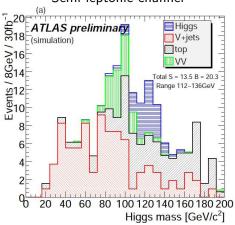
At $\sim 5\sigma$ for 30 fb⁻¹ this looks like a competitive channel for light Higgs discovery. **A powerful method!**

Currently under study in the LHC experiments


Leptonic channel

What changes compared to particle-level analysis?

 $\sim 1.5\sigma$ as compared to 2.1σ Expected given larger mass window



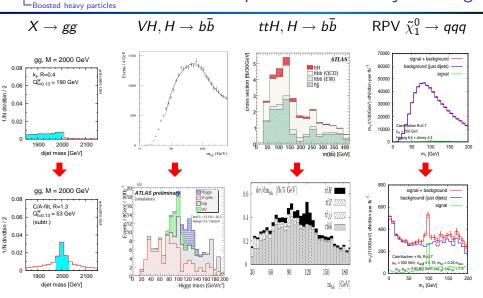
What changes compared to particle-level analysis?

 $\sim 1.5\sigma$ as compared to 3σ Suffers: some events redistributed to semi-leptonic channel

Semi-leptonic channel

What changes compared to particle-level analysis?

 $\sim 3\sigma$ as compared to 3σ Benefits: some events redistributed from missing E_T channel Likelihood-based analysis of all three channels together gives signal significance of


3.7
$$\sigma$$
 for 30 fb⁻¹

To be compared with 4.2σ in hadron-level analysis for $m_H=120$ GeV K-factors not included: don't affect significance (~ 1.5 for VH, 2-2.5 for Vbb) With 5% (20%) background uncertainty, ATLAS result becomes 3.5σ (2.8 σ)

Comparison to other channels at ATLAS ($m_H = 120, 30 \text{ fb}^{-1}$):

Extracted from 0901.0512

The potential of better jet finding

- 1) Cacciari, Rojo, GPS & Soyez '08; 2) Butterworth, Davison, Rubin & GPS '08;
- 3) Plehn, GPS & Spannowsky '09; 4) Butterworth, Ellis, Raklev & GPS '09.

Conclusions

► There are no longer any valid reasons for using jet algorithms that are incompatible with the Snowmass criteria.

LHC experiments are adopting the new tools Individual analyses need to follow suit

- ▶ It's time to move forwards with the question of how best to use jets in searches
- Examples here show two things:
 - Good jet-finding brings significant gains
 - ▶ There's room for serious QCD theory input into optimising jet use

Not the *only* way of doing things But brings more insight than trial & error MC

This opens the road towards Jetography, QCD-based autofocus for jets

Towards Jetography, G. Salam (p. 46) LExtras

EXTRAS

 k_t distance measure is partly *geometrical*:

$$\begin{aligned} \min_{i,j} d_{ij} &\equiv \min_{i,j} (\min\{k_{ti}^2, k_{tj}^2\} \Delta R_{ij}^2) \\ &= \min_{i,j} (k_{ti}^2 \Delta R_{ij}^2) \\ &= \min_{i} (k_{ti}^2 \min_{j} \Delta R_{ij}^2) \end{aligned}$$

In words: for each i look only at the k_t distance to its 2D geometrical nearest neighbour (GNN).

 k_t distance measure is partly geometrical:

$$\begin{aligned} \min_{i,j} d_{ij} &\equiv \min_{i,j} (\min\{k_{ti}^2, k_{tj}^2\} \Delta R_{ij}^2) \\ &= \min_{i,j} (k_{ti}^2 \Delta R_{ij}^2) \\ &= \min_{i} (k_{ti}^2 \min_{i} \Delta R_{ij}^2) \end{aligned}$$

In words: for each i look only at the k_t distance to its 2D geometrical nearest neighbour (GNN).

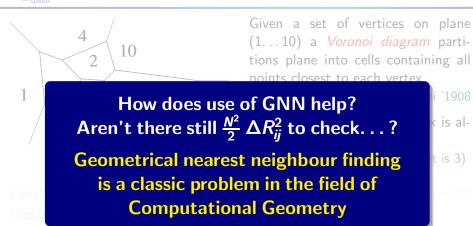
 k_t distance measure is partly geometrical:

$$\begin{aligned} \min_{i,j} d_{ij} &\equiv \min_{i,j} (\min\{k_{ti}^2, k_{tj}^2\} \Delta R_{ij}^2) \\ &= \min_{i,j} (k_{ti}^2 \Delta R_{ij}^2) \\ &= \min_{i} (k_{ti}^2 \min_{i} \Delta R_{ij}^2) \end{aligned}$$

In words: for each i look only at the k_t distance to its 2D geometrical nearest neighbour (GNN).

 k_t distance measure is partly geometrical:

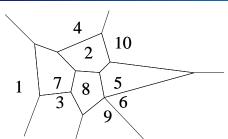
$$\begin{aligned} \min_{i,j} d_{ij} &\equiv \min_{i,j} (\min\{k_{ti}^2, k_{tj}^2\} \Delta R_{ij}^2) \\ &= \min_{i,j} (k_{ti}^2 \Delta R_{ij}^2) \\ &= \min_{i} (k_{ti}^2 \min_{j} \Delta R_{ij}^2) \end{aligned}$$
 2D dist. on rap., ϕ cylinder
$$= \min_{i} (k_{ti}^2 \min_{j} \Delta R_{ij}^2)$$


In words: for each i look only at the k_t distance to its 2D geometrical nearest neighbour (GNN).

k_t distance measure is partly geometrical:

$$\begin{aligned} \min_{i,j} d_{ij} &\equiv \min_{i,j} (\min\{k_{ti}^2, k_{tj}^2\} \Delta R_{ij}^2) \\ &= \min_{i,j} (k_{ti}^2 \Delta R_{ij}^2) \\ &= \min_{i} (k_{ti}^2 \min_{j} \Delta R_{ij}^2) \end{aligned} \qquad \text{2D dist. on rap., } \phi \text{ cylinder}$$

In words: for each i look only at the k_t distance to its 2D geometrical nearest neighbour (GNN).


2d nearest-neighbours

Convenient C++ package available: CGAL, http://www.cgal.org

Coded in the FastJet package (v1), Cacciari & GPS '066

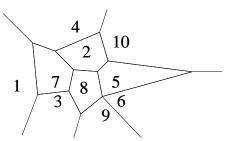
2d nearest-neighbours

Given a set of vertices on plane (1...10) a *Voronoi diagram* partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908

A vertex's nearest other vertex is al-

E.g. GNN of point 7 must be among 1,4,2,8,3 (it is 3)


ways in an adjacent cell.

Construction of Voronoi diagram for N points: N In N time Fortune '88 Update of 1 point in Voronoi diagram: expected In N time

Devillers '99 [+ related work by other authors]

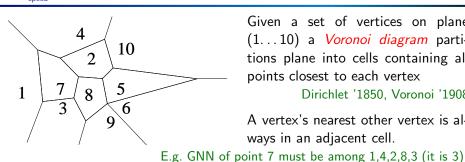
Convenient C++ package available: CGAL, http://www.cgal.org

with help of CGAL, k_t clustering can be done in N In N time Coded in the FastJet package (v1), Cacciari & GPS '06

Given a set of vertices on plane (1...10) a *Voronoi diagram* partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908

A vertex's nearest other vertex is al-


 $\mbox{ways in an adjacent cell.} \\ \mbox{E.g. GNN of point 7 must be among 1,4,2,8,3 (it is 3)}$

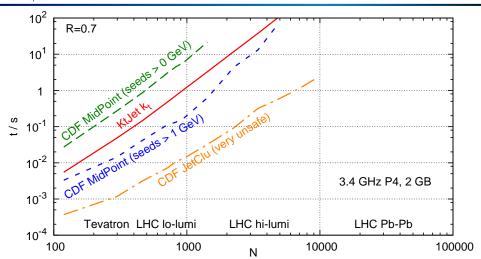
Construction of Voronoi diagram for N points: N In N time Fortune '88 Update of 1 point in Voronoi diagram: expected In N time

Devillers '99 [+ related work by other authors]

Convenient C++ package available: CGAL, http://www.cgal.org

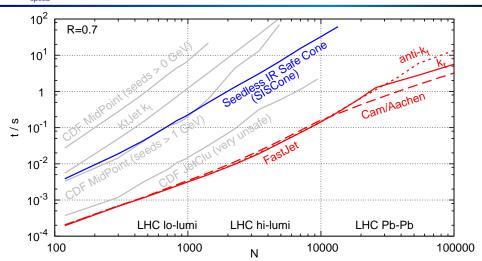
with help of CGAL, k_t clustering can be done in N In N time Coded in the FastJet package (v1), Cacciari & GPS '06

Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all points closest to each vertex Dirichlet '1850, Voronoi '1908


A vertex's nearest other vertex is always in an adjacent cell.

Construction of Voronoi diagram for N points: N In N time Fortune '88

Update of 1 point in Voronoi diagram: expected In N time


Devillers '99 [+ related work by other authors] Convenient C++ package available: CGAL, http://www.cgal.org

with help of CGAL, kt clustering can be done in N In N time Coded in the FastJet package (v1), Cacciari & GPS '06

FastJet (v2.x), codes all developments, natively (k_t , Cam/Aachen, anti- k_t) or as plugins (SISCone): Cacciari, GPS & Soyez '05–09

ttp://fastjet.fr/

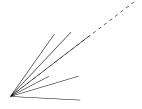
FastJet (v2.x), codes all developments, natively (k_t , Cam/Aachen, anti- k_t) or as plugins (SISCone): Cacciari, GPS & Soyez '05–09

http://fastjet.fr/

Procedure:

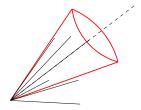
► Find one stable cone

By iterating from hardest seed particle


Call it a jet; remove its particles from the event; repeated

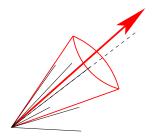
Procedure:

► Find one stable cone


By iterating from hardest seed particle

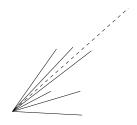
Procedure:

► Find one stable cone


By iterating from hardest seed particle

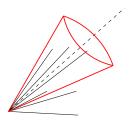
Procedure:

► Find one stable cone


By iterating from hardest seed particle

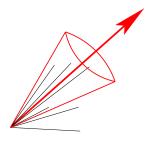
Procedure:

► Find one stable cone


- By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat

Procedure:

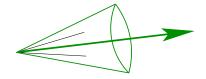
► Find one stable cone


- By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat

Procedure:

► Find one stable cone

- By iterating from hardest seed particle
- ▶ Call it a jet; remove its particles from the event; repeat



- ► Find one stable cone By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat

- ► Find one stable cone By iterating from hardest seed particle
- ▶ Call it a jet; remove its particles from the event; repeat

- ► Find one stable cone By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat

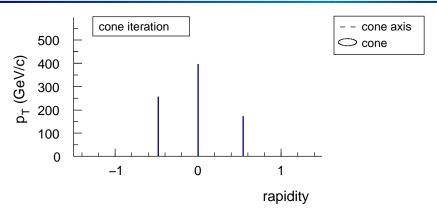
- ► Find one stable cone By iterating from hardest seed particle
- ▶ Call it a jet; remove its particles from the event; repeat

- ► Find one stable cone By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat

Procedure:

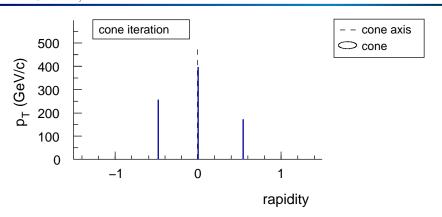
Find one stable cone

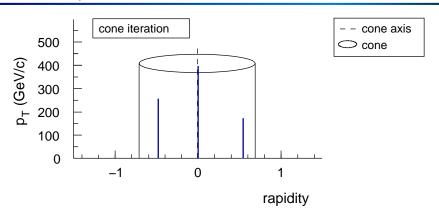
- By iterating from hardest seed particle
- ▶ Call it a jet; remove its particles from the event; repeat


Iterative Cone with Progressive Removal (IC-PR)

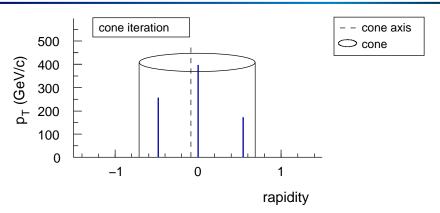
e.g. CMS it. cone, [Pythia Cone, GetJet], ...

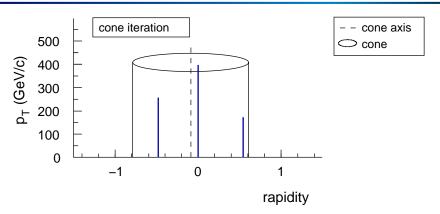
▶ NB: not same type of algorithm as Atlas Cone, MidPoint, SISCone

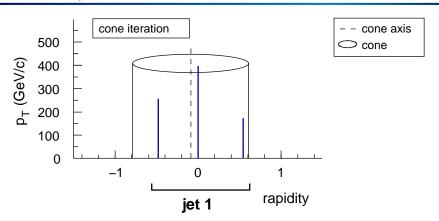


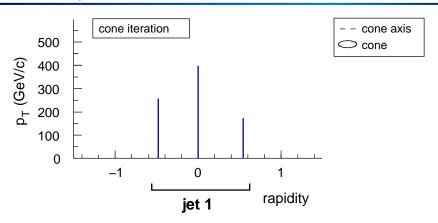


Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

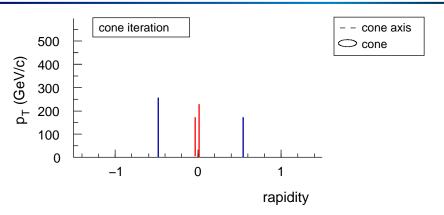

ICPR iteration issue


Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

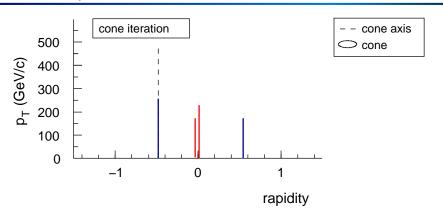

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe ⇒ perturbative calculations give ∞

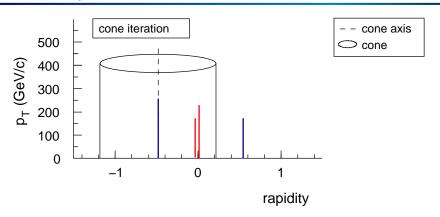

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

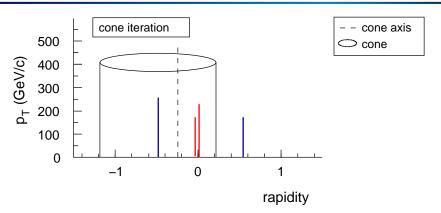
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

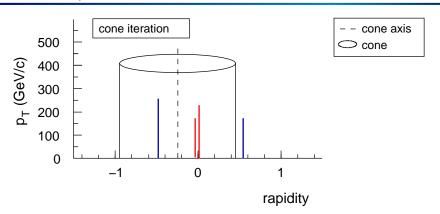


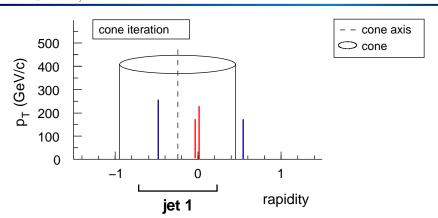
Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe ⇒ perturbative calculations give ∞

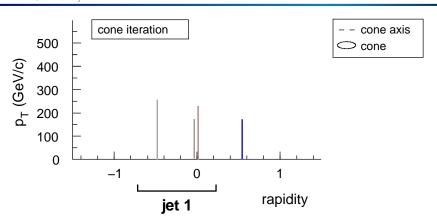

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

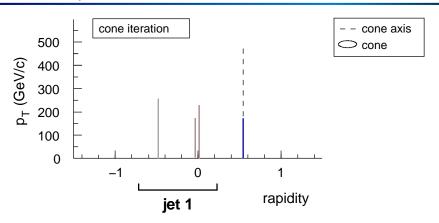

ICPR iteration issue

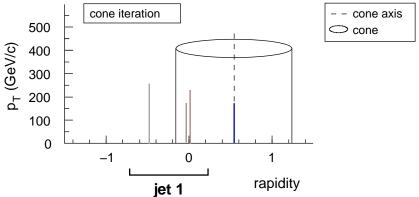


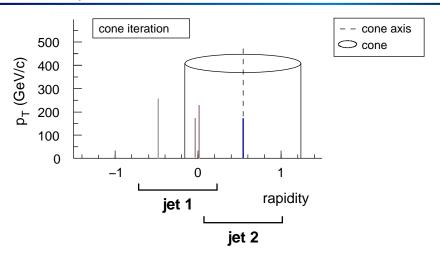

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

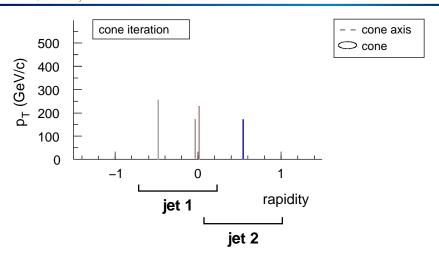

ICPR iteration issue

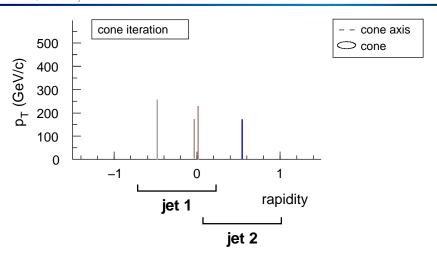


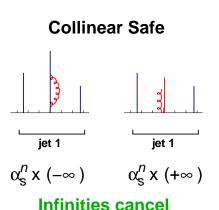


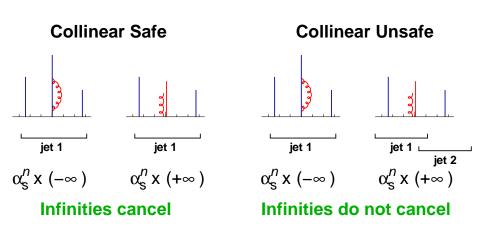











Collinear Unsafe

Infinities do not cancel

Invalidates perturbation theory

Consequences of collinear unsafety

Invalidates perturbation theory

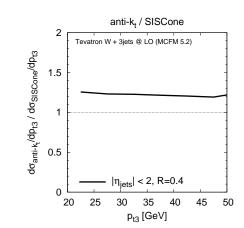
Impact of IRC issues in W+3j

CDF have measured W+3jet X-section with JetClu (IR_{2+1} unsafe).

NLO calculation with JetClu would diverge

[for zero seed threshold]

Strategy for theory: use 2 algs for theory prediction, SISCone & anti- k_t ; difference between them is IRC unsafety "systematic".


With CDF cuts and R choice, difference is \mathcal{O} (20%) 10% @ NLO: Ellis, Melnikov & Zanderighi '09 \sim 20% exp. systematics

CDF have measured W+3jet X-section with JetClu (IR_{2+1} unsafe).

NLO calculation with JetClu would diverge [for zero seed threshold]

Strategy for theory: use 2 algs for theory prediction, SISCone & anti- k_t ; difference between them is IRC unsafety "systematic".

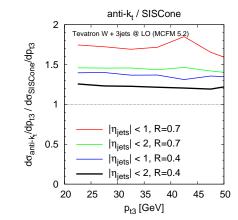
With CDF cuts and R choice, difference is \mathcal{O} (20%) 10% @ NLO: Ellis, Melnikov & Zanderighi '09 \sim 20% exp. systematics

Impact of IRC issues in W+3j

CDF have measured W+3jet X-section with JetClu (IR_{2+1} unsafe).

NLO calculation with JetClu would diverge [for zero seed threshold]

Strategy for theory: use 2 algs for theory prediction, SISCone & anti- k_t ; difference between them is IRC unsafety "systematic".

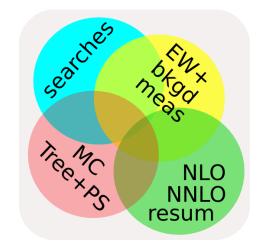

```
ference is \mathcal{O} (20%) 10% @ NLO: Ellis, Melnikov & Zanderighi '09 \sim 20% exp. systematics With other cuts and R choice, IRC systematic can be up to
```

Future measurements deserve

to be done with IRC safe algs...

75%

With CDF cuts and R choice, dif-


I do searches, not QCD. Why should I care about IRC safety?

$$W+1,2,3$$
 jets \longleftrightarrow $W+n$ jets \longleftrightarrow new-physics search NLO v. data LO, LO+MC v. data

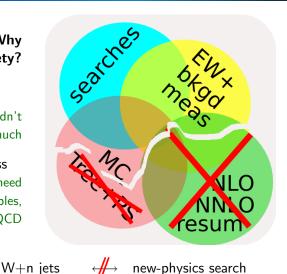
I do searches, not QCD. Why should I care about IRC safety?

$$\underbrace{W+1,2,3 \text{ jets}}_{\text{NLO v. data}} \quad \longleftrightarrow \quad \underbrace{W+n \text{ jets}}_{\text{LO, LO+MC v. data}} \quad \longleftrightarrow \quad \underbrace{\text{new-physics search}}_{\text{LO+MC v. data}}$$

I do searches, not QCD. Why should I care about IRC safety?

W+1,2,3 jets NLO v. data IR safe alg.

LO, LO+MC v. data IR safe alg.

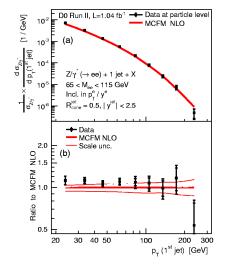

W+n jets

LO+MC v. data IR safe alg.

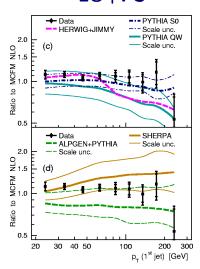
new-physics search

Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

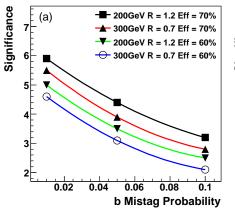


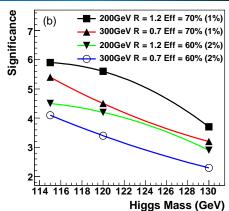
W+1,2,3 jets NLO v. data IR safe alg.


LO, LO+MC v. data IR safe alg.

LO+MC v. data IR unsafe alg.

NLO

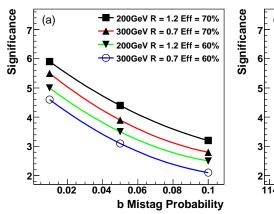

LO+PS

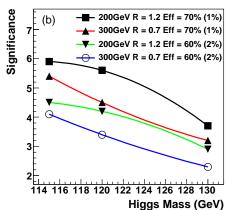


Cross section for signal and the Z+jets background in the leptonic Z channel for $200 < p_{TZ}/\,\text{GeV} < 600$ and $110 < m_J/\,\text{GeV} < 125$, with perfect b-tagging; shown for our jet definition (C/A MD-F), and other standard ones close to their optimal R values.

Jet definition	$\sigma_{\mathcal{S}}/fb$	$\sigma_B/{\sf fb}$	$S/\sqrt{B \cdot \mathrm{fb}}$
C/A, R = 1.2, MD-F	0.57	0.51	0.80
$k_t, R = 1.0, y_{cut}$	0.19	0.74	0.22
SISCone, $R = 0.8$	0.49	1.33	0.42
anti- k_t , $R=0.8$	0.22	1.06	0.21

Impact of *b*-tagging, Higgs mass


Most scenarios above 3σ


For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution]

In nearly all cases, looks feasible for extracting WH, ZH couplings

Impact of *b*-tagging, Higgs mass

Most scenarios above 3σ

For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution]

In nearly all cases, looks feasible for extracting WH, ZH couplings