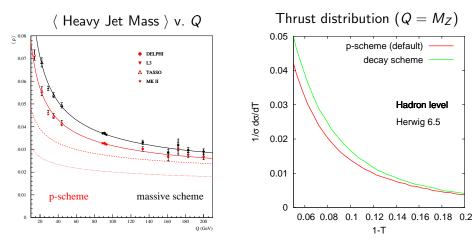
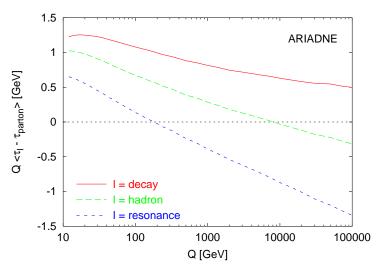
Subtleties of NP effects in event shapes (work 10 years ago with Daniel Wicke)

Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS

Aspen Center for Physics 2 June 2010 We all know that parton level is not well-defined. It depends what went into the partonic calculation. MCs: impact of low- p_t cutoff

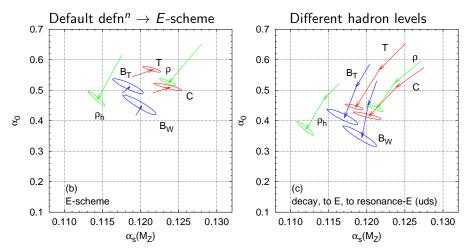

NNLO/NⁿLL: integration into IR, renormalons

But we musn't forget that hadron level has its ambiguities too:

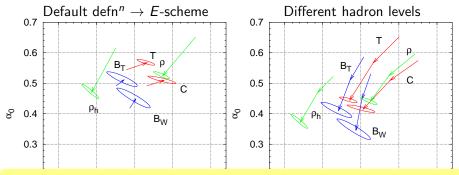

- Which hadrons do you mean?
 - "Resonance level", at a few hundred fermi from interaction point?
 - Default hadron-level: at a few meters from IP?
 - Fully decayed: at ∞ ?
- Purely partonic calculations (and renormalon calcs) know nothing about hadron decays; nor about differences between E and |p
 | Hadrons are massive, partons are not

Hadrons are massive, partons are not

Hadron mass effects are significant



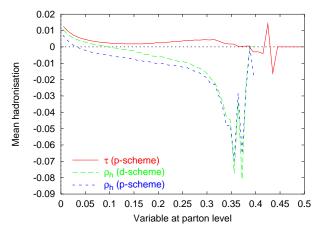
 Λ/Q is a good first approximation. But there are anomalous dimensions, and their impact depends on what hadron level you use.


If your fit has degeneracies in the $\alpha_0 - \alpha_s$ plane, then a mis-parametrised non-perturbative part will translate to a systematic error on α_s .

Below: NLO + 1/Q - double counting, à la Dokshitzer-Webber

If your fit has degeneracies in the $\alpha_0 - \alpha_s$ plane, then a mis-parametrised non-perturbative part will translate to a systematic error on α_s .

Below: NLO + 1/Q - double counting, à la Dokshitzer-Webber



For fits to distributions, this may matter less than in fits to mean-values (cf. Gardi & Rathsman found only 1.5% effects).

It depends on how critical Q-scaling is to resolving $\alpha_{\rm s}-\alpha_0$ degeneracy.

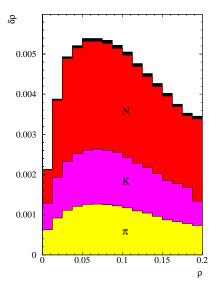
MC tells us that NP correction to thrust/ ρ_h /etc. is *not* necessarily independent of value of thrust/ ρ_h /etc.

Many fits *assume* that it is independent. (Don't know how to do better) Except, partially, for jet broadenings; thrust in SCET?

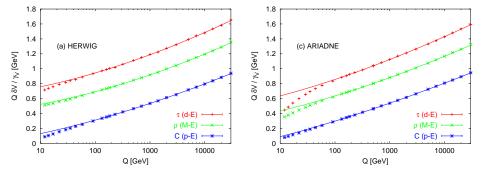
Trade bad modelling of NP \leftrightarrow modified α_{s}

 \Rightarrow unquantified systematic errors on α_{s} , that are especially severe in fits to distributions. Can we really measure $\alpha_{\rm s}$ accurately from e^+e^- events shapes? Without ILC...

So far I'm not sure I'm convinced we can. Despite having (because I've) played these games myself


Examining different "hadron-levels" can help stress-test the assumptions of analytical hadronisation models.

But, a fit to just a single event shape (e.g. thrust) may still be subject to important systematics that remain hidden until you study multiple event shapes...


 α_{s} from event shapes? (p. 8)

EXTRAS

Massive-p-scheme breakdown

Hadron mass effects

