Giant K factors

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Work performed with Mathieu Rubin and Sebastian Sapeta, arXiv:1006.2144

UMD/Hopkins joint seminar Maryland, 1 December 2010

New resonance (e.g. Z') where you see all decay products and reconstruct an invariant mass

QCD may:

- swamp signal
- smear signal

leptonic case easy; hadronic case harder

New resonance (e.g. R-parity conserving SUSY), where undetected new stable particle escapes detection.

Reconstruct only *part* of an invariant mass \rightarrow kinematic edge.

QCD may:

- swamp signal
- smear signal

Unreconstructed SUSY cascade. Study *ef-fective* mass (sum of all transverse momenta).

Broad excess at high mass scales.

Knowledge of backgrounds is crucial is declaring discovery.

QCD is *one way* of getting handle on back-ground.

THIS TALK

THIS TALK

[Introduction]

[Introduction]

SUSY searches: what excesses?

Atlas selection [all hadronic]

- no lepton
- MET > 100 GeV
- 1^{st,}2nd jet > 100 GeV
- 3rd,4th jet > 50 GeV

CMS selection [leptonic incl.]

(optimized for 10fb⁻¹, using genetic algorithm)

- 1 muon pT > 30 GeV
- MET > 130 GeV
- 1st, 2nd jet > 440 GeV
- 3rd jet > 50 GeV
- -0.95 < cos(MET,1stjet)<0.3

SUSY searches: what excesses?

1 muon pT > 30 GeV

1st, 2nd jet > 440 GeV

MET > 130 GeV

• 3rd jet > 50 GeV

CMS selection [leptonic incl.]

(optimized for 10fb⁻¹, using genetic algorithm)

Atlas selection [all hadronic]

- no lepton
- MET > 100 GeV
- 1^{st,2nd} jet > 100 GeV
- 3rd,4th jet > 50 GeV

SUSY \simeq factor 5–10 excess

1000

 $\sigma = c_0 + c_1\alpha_s + c_2\alpha_s^2 + \dots$ $\alpha_s \simeq 0.1$ That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

Rules of thumb: LO good to within factor of 2 NLO good to within scale uncertainty

This talk is about an example where these rules fail spectacularly, the lessons we learn, and the solutions we can apply.

Anastasiou, Melnikov & Petriello '04 Anastasiou, Dissertori & Stöckli '07 $\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots$ $\alpha_s \simeq 0.1$

That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

<u>Rules of thumb:</u> LO good to within factor of 2 NLO good to within scale uncertainty

This talk is about an example where these rules fail spectacularly, the lessons we learn, and the solutions we can apply.

Anastasiou, Melnikov & Petriello '04 Anastasiou, Dissertori & Stöckli '07 $\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots$ $\alpha_s \simeq 0.1$

That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

This talk is about an example where these rules fail spectacularly, the lessons we learn, and the solutions we can apply.

Anastasiou, Melnikov & Petriello '04 Anastasiou, Dissertori & Stöckli '07 $\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots$ $\alpha_s \simeq 0.1$

That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

This talk is about an example where these rules fail spectacularly, the lessons we learn, and the solutions we can apply.

Control samples

We don't always have NLO for the background (e.g. Z+4 jets, a $2 \rightarrow 5$ process). Though amazing recent progress $2 \rightarrow 4$: Blackhat, Rocket, Helac-NLO, BDDP $2 \rightarrow 5$ (W+4j): Blackhat

Must then rely on LO (matched with parton showers). How does one verify it?

Common procedure (roughly):

- Get control sample at low p_t
- SUSY should be small(er) contamination there
- Once validated, trust LO prediction at high-pt

A conservative QCD theory point of view:

It's hard to be sure: since we can't (yet) calculate Z+4 jets beyond LO. But we would tend to think it is safe, as long as control data are within usual factor of two of LO prediction

Illustrate issues with toy example: Z+jet production

- ► It's known to NLO and a candidate for "first" 2 → 2 NNLO $\sim e^+e^- \rightarrow \gamma^*/Z \rightarrow 3$ jets, NNLO: Gehrman et al '08, Weinzierl '08
- But let's pretend we only know it to LO, and look at the pt distribution of the hardest jet (no other cuts — keep it simple)

Toy data, control sample

Toy data, control sample

stage 1: get control sample

Check LO v. data at low p_t

 normalisation off by factor 1.5 (consistent with expectations) So renormalise LO by K-fact

shape OKish

Don't be too fussy: SUSY could bias higher p_t

Toy data, control sample

stage 1: get control sample

Check LO v. data at low p_t

- normalisation off by factor 1.5 (consistent with expectations) So renormalise LO by K-fact
- shape OKish

Don't be too fussy: SUSY could bias higher p_t

stage 2: look at high pt

- good agreement at low pt, by construction
- excess of factor ~ 10 at high
 p_t
- check scale dependence of LO [NB: not always done except e.g. Alwall et al. 0706.2569] still big excess

Toy data, high p_t

stage 2: look at high p_t

- ▶ good agreement at low p_t, by construction
- excess of factor ~ 10 at high
 p_t
- check scale dependence of LO [NB: not always done except e.g. Alwall et al. 0706.2569] still big excess

Toy data, high p_t

stage 2: look at high p_t

- ▶ good agreement at low pt, by construction
- excess of factor ~ 10 at high
 p_t
- check scale dependence of LO [NB: not always done except e.g. Alwall et al. 0706.2569] still big excess

ls it:

- QCD + extra signal?
- ▶ just QCD? But then where does a *K*-factor of 10 come from?

Here it's just a toy illustration. Next year it may be for real:

▶ Do Nature / Science / PRL accept the paper?

Discovery of New Physics at the TeV scale We report a 5.7 σ excess in MET + jets production that is consistent with a signal of new physics ...

Do we proceed immediately with a linear collider? It'll take 10–15 years to build; the sooner we start the better

At what energy? It would be a shame to be locked in to the wrong energy...

ls it:

- QCD + extra signal?
- ▶ just QCD? But then where does a *K*-factor of 10 come from?

Here it's just a toy illustration. Next year it may be for real:

Do Nature / Science / PRL accept the paper?

Discovery of New Physics at the TeV scale We report a 5.7 σ excess in MET + jets production that is consistent with a signal of new physics ...

Do we proceed immediately with a linear collider? It'll take 10–15 years to build; the sooner we start the better

► At what energy? It would be a shame to be locked in to the wrong energy...

Open the box...

Unlike for SUSY multi-jet searches, in the Z+jet case we do have NLO.

Once NLO is included the excess disappears

The "toy data" were just the upper edge of the NLO band

Example based on background work for Butterworth, Davison, Rubin & GPS '08

Related observations also by Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Muck '09

Hold on a second: how does QCD give a K-factor O(5 - 10)? NB: DYRAD, MCFM consister

Open the box...

Unlike for SUSY multi-jet searches, in the Z+jet case we do have NLO.

Once NLO is included the excess disappears

The "toy data" were just the upper edge of the NLO band

Example based on background work for Butterworth, Davison, Rubin & GPS '08

Related observations also by Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Muck '09

Hold on a second: how does QCD give a K-factor $\mathcal{O}(5-10)$? NB: DYRAD, MCFM con

Open the box...

Unlike for SUSY multi-jet searches, in the Z+jet case we do have NLO.

Once NLO is included the excess disappears

The "toy data" were just the upper edge of the NLO band

Example based on background work for Butterworth, Davison, Rubin & GPS '08

Related observations also by Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Muck '09

Hold on a second: how does QCD give a K-factor O(5-10)? NB: DYRAD, MCFM consistent

What about other observables?

Why the large K-factor?

LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$. EW bosons are light. New logarithmically enhanced topologies appear.

G. Salam (CERN/Princeton/LPTHE)

Why the large K-factor?

LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$. EW bosons are light. New logarithmically enhanced topologies appear.

G. Salam (CERN/Princeton/LPTHE)

Why the large K-factor?

LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$ EW bosons are **light**. **New logarithmically enhanced topologies appear.**

Why the large K-factor?

LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$. EW bosons are **light**. New logarithmically enhanced topologies appear.

G. Salam (CERN/Princeton/LPTHE)

Why the large K-factor?

EW bosons are light. New logarithmically enhanced topologies appear.

Is this example not a little contrived? After all, experiments would surely notice unexpected event topology such as that here.

We actually first saw the problem in a more complex process: $Wb\bar{b}$ as a background to boosted Higgs searches (with "wrong" cuts). The more complicated the process, the trickier the diagnosis of the problem.

It's enough to get this wrong once, leading to "unwarranted" press-releases and major subsequent embarassment.
We'll look at two questions:

1) In day-to-day experimental work, can standard techniques help reduce the likelihood of getting caught out by this type of problem? (Even without a NLO calculation)

2) What good is perturbative QCD if the "perturbative" convergence is so poor? What happens at the next order?

A standard predictive approach in Z+(multi) jet processes, widely used by experiments:

- take Alpgen/Madgraph/Sherpa to generate samples of Z, Z+1-jet, Z+2-jet, etc. tree-level events with some cuts to separate samples
- shower them with Herwig/Pythia/Sherpa, including some prescription to combine different topologies sensibly

MLM matching, CKKW matching

avoid double counting, approximate "Sudakovs"

Does it work here? Try showering Z + jet and Z + 2-jets samples

 p_t of Z-boson

 p_t of jet 1 10⁴ pp, 14 TeV 10³ dơ/dp_{t,j1} [fb / 100 GeV] 10² 10 LO \boxtimes NLO 1 10⁻¹ 10⁻² 200 300 400 500 600 700 800 900 1000 p_{t,i1} [GeV]

Testing Alpgen + Herwig + MLM Matching

Showered $Z+j \neq LO$

Testing Alpgen + Herwig + MLM Matching

1st lesson:

If you figure out the "leading" process $[{\sf Z}\,+\,{\sf jet}~@~{\sf LO}]$

and add in process with one extra jet through MLM/CKKW matching. [i.e. include Z + 2 jets @ LO]

impact of new large topologies will often show up This might be called "Pauper's NLO"

It's reassuring that **suitable use** of Alpgen catches this problem.

[Is it always being used "suitably" (with extra jet)? That's far from clear. What happens with heavy flavour? Also far from clear]

1st lesson:

If you figure out the "leading" process $[{\sf Z}\,+\,{\sf jet}~@~{\sf LO}]$

and add in process with one extra jet through MLM/CKKW matching. [i.e. include Z + 2 jets @ LO]

impact of new large topologies will often show up This might be called "Pauper's NLO"

It's reassuring that suitable use of Alpgen catches this problem.

[Is it always being used "suitably" (with extra jet)? That's far from clear. What happens with heavy flavour? Also far from clear] Now suppose we want to be more ambitious, and get **accurate** predictions for such processes, i.e. "NLO quality"

When NLO Z+j is dominated by a new subprocess (Z+2j), it's effectively no better than LO for the new subprocess (Z+2j).

We really want somehow to include NLO for Z+2j.

Can we just merge Z+jet@NLO with Z+2jet@NLO?

To understand how, we're going to

1. look at how MLM matching combines LO Z+jet and LO Z+2jets

- 2. simplify it (strip off the parton shower) \rightarrow **LoopSim**
 - 3. extend LoopSim to deal with NLO cases

shower Z+parton

 $Z + {\rm parton\ implicitly\ includes\ part\ of\ } Z + 2 \ {\rm partons\ }$ It's just that the 2nd parton isn't always explicitly "visible"

cartoon of MLM merging of Z+j and Z+2j

[MLM Matching] └[How it works]

 MLM merging relies on parton shower to help figure out what fraction of Z + parton is really Z + 2 partons.

Our aim is to do that without the parton shower

 MLM merging relies on parton shower to help figure out what fraction of Z + parton is really Z + 2 partons.

Our aim is to do that without the parton shower

 MLM merging relies on parton shower to help figure out what fraction of Z + parton is really Z + 2 partons.

Our aim is to do that without the parton shower

[LoopSim]

└[The idea]

For every Z + 2 parton (2 → 3) event, figure out what what 2 → 2 event it would really have come from "Loop" the softest parton [Don't actually explicitly calculate any loop diagrams: simulate the loops]
 Subtract that 2 → 2 event Unlike MLM, no cutoffs on 2 → 3 events If done properly, divergences will cancel
 G. Salam (CERN/Princeton/LPTHE) Giant K-factors 2010-12-01 23 / 34

- Use jet algorithm to assign a branching structure to event à la CKKW
- The particles that are softest are the ones that will be "looped"

*n*LO accuracy

Define operators:

$U_{\ell}(\text{event E}) \equiv \text{all simulated } \ell\text{-loop events from E}$

$$U_{orall}({ t event})\equiv \sum_{\ell=0}\,U_\ell({ t event})$$

"U" stands for unitarisation (cancellation of all divergences) sum of all diagrams (essentially) adds up to zero

Analogue of MLM Z+j combined with Z+2j is then

$Z+j@\bar{n}LO \equiv Z+j@LO + U_{\forall}(Z+2j@LO)$

we use " $\bar{n}LO$ " to emphasize that this is a crude approximation to an actual NLO calculation — the exact loops are missing

When the K-factors are large, $\bar{n}\text{LO}$ agrees well with NLO ______ Just like MLM matching

Differences between and LoopSim and MLM/CKKW matching:

- Does not rely on shower (✓: simple; X: not easily integrated with shower MCs)
- 2. Does not need arbitrary separation of Z+1/Z+2/etc. samples with (hard-to-choose) momentum cutoff
 - 3. Can easily be extended beyond LO matching

Just replace simulated loops with exact loops Apply LoopSim to exact 1-loop to get (e.g.) simulated 2-loop terms

$$\begin{split} E_{n,\ell} &\equiv \text{event with } n \text{ partons and } \ell \text{ exact loops} \\ U_{\forall,\ell} &\equiv \text{operator to apply when } \ell \text{ exact loops known} \\ U_{\forall,1}(E_{n,0}) &= U_{\forall}(E_{n,0}) - U_{\forall}(U_1(E_{n,0})) \\ U_{\forall,1}(E_{n,1}) &= U_{\forall}(E_{n,1}) \end{split}$$

 $\mathsf{Z}+\mathsf{j}@\bar{n}\mathsf{NLO}=\mathsf{Z}+\mathsf{j}@\mathsf{NLO}+\mathit{U}_{\forall,1}(\mathsf{Z}+2\mathsf{j}@\mathsf{NLO}_{\mathsf{only}})$

Extension to NLO, NNLO, multi-leg, etc. is almost trivial in LoopSim

Not the case in methods that merge with parton showers too

[LoopSim]

L[nNLO

Testing NLO Merging, in 3 processes

1. Z@NLO with Z+j@NLO

2. Z+j@NLO with Z+2j@NLO

3. 2j@NLO with 3j@NLO

Validation: Drell-Yan lepton p_t , \bar{n} NLO v. NNLO

nLO v. NLO

Z (i.e. DY) with Z+j from MCFM & LoopSim

For $p_{t\,ell} \gtrsim \frac{1}{2}M_Z + \Gamma_Z$ (giant *K*-factor!) it had to work For $p_{t,\ell} \lesssim \frac{1}{2}M_Z + \Gamma_Z$ it's remarkable that it still works

Validation: Drell-Yan lepton p_t , \bar{n} NLO v. NNLO

nLO v. NLO

[LoopSim]

└[*n*NLO

NNLO from DYNNLO, Z (i.e. DY) with Z+j from MCFM & LoopSim

For $p_{t\,ell} \gtrsim \frac{1}{2}M_Z + \Gamma_Z$ (giant *K*-factor!) it had to work For $p_{t,\ell} \lesssim \frac{1}{2}M_Z + \Gamma_Z$ it's remarkable that it still works

Validation: Drell-Yan lepton p_t , \bar{n} NLO v. NNLO

nLO v. NLO

[LoopSim]

└[*n*NLO

NNLO from DYNNLO, Z (i.e. DY) with Z+j from MCFM & LoopSim

For $p_{t\,ell} \gtrsim \frac{1}{2}M_Z + \Gamma_Z$ (giant K-factor!) it had to work For $p_{t,\ell} \lesssim \frac{1}{2}M_Z + \Gamma_Z$ it's remarkable that it still works

- *p_{tZ}* distribution didn't have giant *K*-factors.
- *n*NLO brings no benefit
 To get improvement you would need exact 2-loop terms

- ▶ p_{tj} distribution seems to converge at n̄NLO
- \blacktriangleright scale uncertainties reduced by \sim factor 2

- ► Significiant further enhancement for H_{T,jets}
- ► *n*NLO brings clear message:

H_{T,jets} is not a good observable!

H_T (effective mass) type observables are widely used in searches

- H_T has a steeply falling distribution (like p_{tj} , p_{tZ})
- ► At each order (NLO, NNLO), an extra (soft) jet contributes to the H_T sum
 e.g. from ISR
- ► That shifts *H*_T up, which translates to a substantial increase in the cross section

We can test this hypothesis for plain jet events, using a truncated sum,

$$H_{T,n} = \sum_{i=1}^{n} p_{t, \text{jet } i}$$

 $H_{T,n}$ in (di)jet events

A clear message: for a process with *n* objects at lowest order, use $H_{T,n}$

Do you know what gets used in your experiment's searches? Many writers of ATLAS SUSY proceedings didn't...

Be aware that giant K-factors exist

Always look one order beyond the leading order, for example with $$\rm MLM/CKKW$$ matching

New tool to get good predictions in such cases: LoopSim Basically an "operator" to generate approximations to unknown loops Combine Z+j@NLO, Z+2j@NLO to get " \bar{n} NLO" Z+jet It sometimes works even beyond "giant-K-factor" regions

Watch out for H_T

Even for simple processes, it converges very poorly unless you define it carefully (limit number of objects in sum)