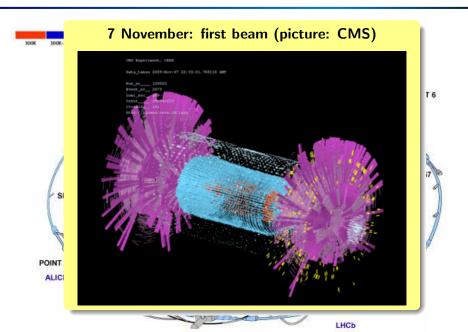
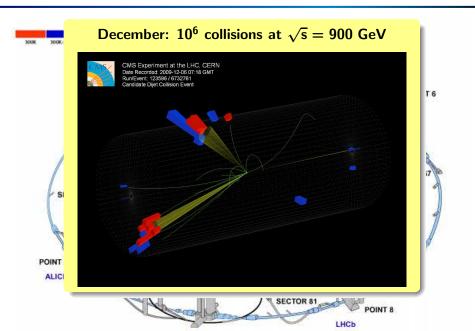
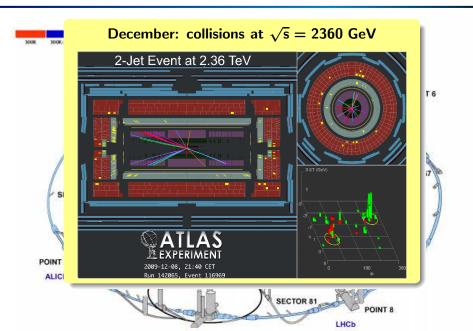
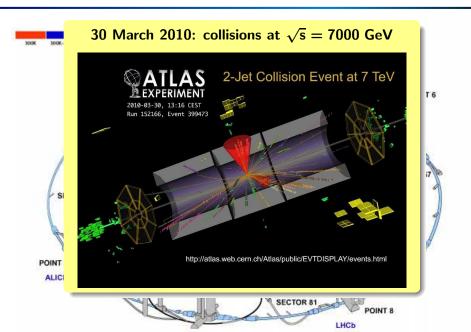

LHC searches: what role for QCD?


Gavin Salam


LPTHE, CNRS and UPMC (Univ. Paris 6)


Paul Scherrer Institut, Villigen 1 April 2010


Including examples based on work with Butterworth, Davison & Rubin

Compared to current biggest collider (Tevatron)

- LHC energy will be 7 times higher
- ► Total number of collisions (over 6 years) 50 times higher

Aims are varied:

Higgs discovery

key element in design and funding decisions

 $(10^9/s)$

- Searches for new physics
 - supersymmetry
 - extra dimensions
 - new resonances (e.g. Z')
 - etc. [or something as yet unpostulated]
- Standard model physics
 - High statistics top physics
 - etc.

Compared to current biggest collider (Tevatron)

- LHC energy will be 7 times higher
- ► Total number of collisions (over 6 years) **50 times higher**

Aims are varied:

Higgs discovery

key element in design and funding decisions

 $(10^9/s)$

- Searches for new physics
 - supersymmetry
 - extra dimensions
 - new resonances (e.g. Z')
 - etc. [or something as yet unpostulated]
- Standard model physics
 - High statistics top physics
 - etc.

LHC collides quarks and gluons

Quarks and gluons interact strongly \rightarrow huge QCD backgrounds

Therefore we will need to rely on our understanding of QCD in order to make discoveries at LHC.

True, false, or only half the story?

LHC collides quarks and gluons

Quarks and gluons interact strongly \rightarrow huge QCD backgrounds

Therefore we will need to rely on our understanding of QCD in order to make discoveries at LHC.

True, false, or only half the story?

It must be true, otherwise why would there be such a large effort devoted to LHC-QCD calculations?

- Parton shower Monte Carlo Generators
 LO tree-level calculations
 NLO calculations
 NNLO calculations
 NNLO calculations
 Pythia, Herwig, Sherpa
 Alpgen, Madgraph, Sherpa, ...
 ~ 50 people
 Higgs, W/Z, next step jets
- All-orders calculations
- Parton Distribution Functions (PDFs)

resummations, SCET

CTEQ, MSTW, NNPDF, ...

Order 100,000,000 $/ \pounds/CHF/ \in$ spent over 10 years

The most pervasive role of QCD at LHC

Every paper that comes out from the ATLAS and CMS pp physics programmes will involve the use of one or more QCD-based parton-shower Monte Carlo event generators: Pythia, Herwig or Sherpa.

For simulating physics signals.

For simulating background signals.

For simulating pileup.

As input to simulating detector respone.

ISUB Subprocess name

e of QCD at LHC

+ fbar' + g nes out from the ATLAS and CMS pp physics

- olve the use of one or more QCD-based
- e Carlo event generators: Pythia, Herwig or

Sherpa.

a +

11

12

13 f+

28 f+

53 g +

68

96

For simulating physics signals.

f' (OCD)

-> f'

fbar -> g + g g -> f + g

 $q \rightarrow f + fbar$

g -> g + g

Semihard OCD 2 -> 2

For simulating background signals.

For simulating pileup.

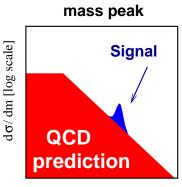
As input to simulating detector respone.

ISUB Subprocess name

11 f+				1	Event listin	g (standard)			
12 f+ 13 f+ 28 f+	I	particle/jet	K(I,	1)	P(I,1)	P(I,2)	P(I,3)	P(I,4)	P(1,5)
53 g + 68 g +_	1 2	!p+! !p+!		21 21	0.00000	0.00000 0.00000	6999.99994 -6999.99994	7000.00000 7000.00000	0.93827 0.93827
96 Sem Sherj For s	3 4 5 6 7 8	!u! !u! !g! !u! !g! !u!		21 21 21 21 21 21 21 21	-0.20478 -0.52164 69.88093 -3.29805 342.80888 -276.22601	-1.99677 -0.53530 -38.60332 0.22934 -101.05545 62.68148	4200.93192 -1227.35705 186.26860 -594.30442 -85.04352 -322.99229	4200.93240 1227.35728 202.65624 594.31361 367.37248 429.59738	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.33000
	9 L0 L1	(u) (g) (g)	A I I	12 12 12	2.92305 -0.12086 2.90849	6.37706 -0.05387 0.44667	2.55209 0.23937 3.06707	7.47216 0.27351 4.25039	0.33000 0.00000 0.00000
For s	L2 L3 L4	(g) (g) (g)	I I I	12 12 12	0.44539 0.72977 0.12403	0.19658 2.84935 0.47094	1.08590 0.81600 -1.65408	1.19004 3.05241 1.72428	0.00000 0.00000 0.00000
As in :	L5 L6 L7	(g) (g) (g)	I I I	12 12 12	0.63915 1.26081 1.39862	1.19608 0.95080 -0.87388	-6.31736 -9.60839 -14.36959	6.46128 9.73729 14.46392	0.00000 0.00000 0.00000
	L8 L9 20	(g) (g) (g)	I I I	12 12 12	0.94209 2.85917 -0.94209	-0.92748 0.96504 0.92748	-58.84151 -201.26331 -163.96216	58.85636 201.28593 163.96749	0.00000 0.00000 0.00000
	21 22 23	(g) (g) 	I	12 12	-2.90849 -0.03667	-0.44667 -0.02590	-423.55274 0.00503	423.56296 0.04517	0.000000.000000000000000000000000000000

ISUB Subprocess name

11	f +				Event listin	g (standard)			
12	f +					-			
13	f +	I	particle/jet	K(I,1)	P(I,1)	P(I,2)	P(I,3)	P(I,4)	P(I,5)
28	f +	1	!p+!	21	0.00000	0.00000	6999,99994	7000.00000	0.93827
53	g +	2	!p+!	21	0.00000	0.00000	-6999.99994	7000.00000	0.93827
68	g +								
96	Sem	2	! u !	21	-0.20478	-1.99677	4200.93192	4200.93240	0.00000
		4	1u1	21	-0.52164	-0.53530	-1227.35705	1227.35728	0.00000
		5	! g !	21	69.88093	-38.60332	186.26860	202.65624	0.00000
		6	lul	21	-3.29805	0.22934	-594.30442	594.31361	0.00000
		7	!g!	21	342.80888	-101.05545	-85.04352	367.37248	0.00000
		8	!u!	21	-276.22601	62.68148	-322.99229	429.59738	0.33000
		165	(rho0)	11	9.26285	-1.51905	-1.63571	9.55696	0.74292
		166	pi-	1	2,97622	-0.72739	-0.31237	3.08286	0.13957
		167	pi+	1	2.90207	-0.46804	-0.08318	2.94405	0.13957
		168	(omega)	11	6.33127	-0.15752	0.01513	6.38115	0.78042
		169	(rho-)	11	1.27652	-1.77925	0.66381	2.39534	0.70836
		170	(omega)	11	-0.38942	0.17068	1.21017	1.50136	0.78024
		171	pi+	1	-0.09283	0.10773	0.32113	0.37793	0.13957
		172	(rho-)	11	-0.24864	-0.18762	1.86992	2.14719	1.00837
		173	(K*+)	11	-1.87908	0.80841	1.49858	2.68439	0.88076
		174	(K*-)	11	-3.82206	2.20136	2.34838	5.07340	0.87770
		175	(rho+)	11	-13.22858	5.42242	4.50921	15.02121	0.95161
		176	(rho0)	11	-11.94640	5.71075	4.73622	14.07218	0.51488
		177	(eta)	11	-10.84249	4.63993	3.47786	12.30788	0.54745
		178	(rho0)	11	-11.59191	4.94873	5.09943	13.62590	0.89360
		179	(rho0)	11	-3.47439	1.79711	1.42757	4.24437	0.82201
		180	(rho-)	11	-1.09464	0.50862	0.33785	1.41536	0.65739
		181	(omega)	11	-3.07966	1.34675	0.70043	3.52173	0.78355
		182	(rho+)	11	-3.57280	0.49038	1.66254	4.07286	0.90486

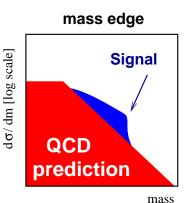

Words of caution

[...] unless each of the background components can be separately tested and validated, it will not be possible to draw conclusions from the mere comparison of data against the theory predictions.

I am not saying this because I do not believe in the goodness of our predictions. But because claiming that supersymmetry exists is far too important a conclusion to make it follow from the straight comparison against a Monte Carlo.

Mangano, 0809.1567

Try to examine the question of how much QCD matters, how much it can help with searches.

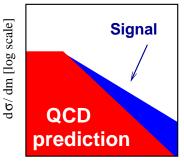

New resonance (e.g. Z') where you see all decay products and reconstruct an invariant mass

QCD may:

- swamp signal
- smear signal

leptonic case easy; hadronic case harder

mass

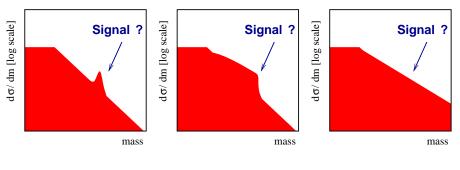

New resonance (e.g. R-parity conserving SUSY), where undetected new stable particle escapes detection.

Reconstruct only *part* of an invariant mass \rightarrow kinematic edge.

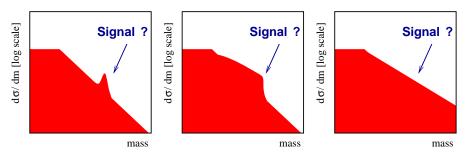
QCD may:

- swamp signal
- smear signal

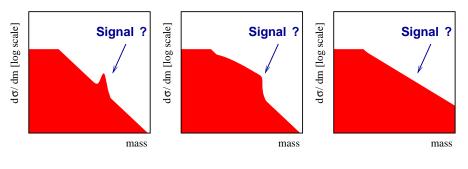
high-mass excess


Unreconstructed SUSY cascade. Study *effective* mass (sum of all transverse momenta).

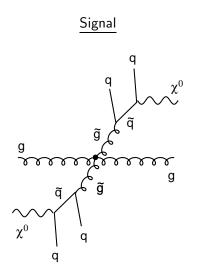
Broad excess at high mass scales.

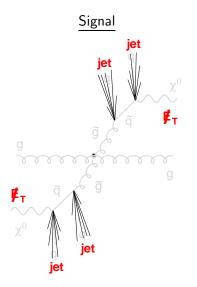

Knowledge of backgrounds is crucial is declaring discovery.

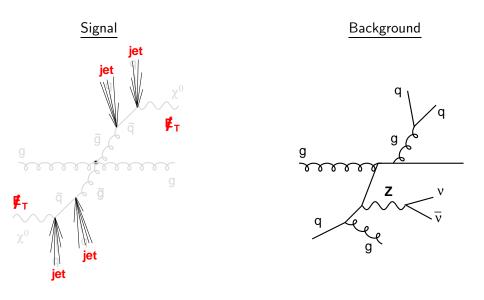
QCD is *one way* of getting handle on back-ground.


mass

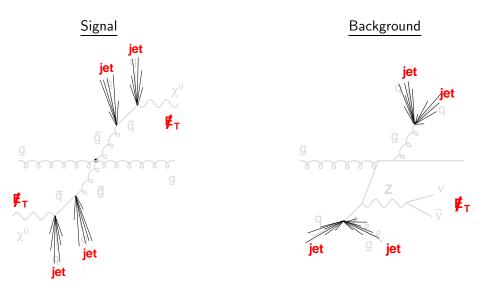
CONTINUE HERE START HERE

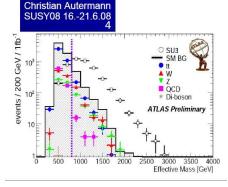



CONTINUE HERE START HERE


CONTINUE HERE START HERE

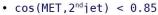
Predicting QCD

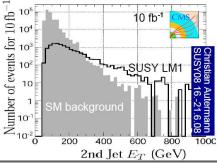




SUSY searches: what excesses?

Atlas selection [all hadronic]


- no lepton
- MET > 100 GeV
- 1^{st,}2nd jet > 100 GeV
- 3rd,4th jet > 50 GeV
- MET / m_{eff} > 20%

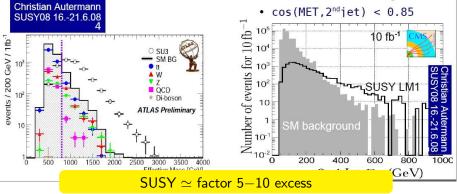


CMS selection [leptonic incl.]

(optimized for 10fb⁻¹, using genetic algorithm)

- 1 muon pT > 30 GeV
- MET > 130 GeV
- 1st, 2nd jet > 440 GeV
- 3rd jet > 50 GeV
- -0.95 < cos(MET,1stjet)<0.3

SUSY searches: what excesses?

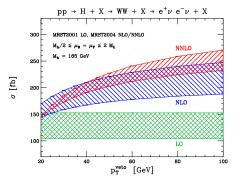

Atlas selection [all hadronic]

- no lepton
- MET > 100 GeV
- 1^{st,}2nd jet > 100 GeV
- 3rd,4th jet > 50 GeV
- MET / m_{eff} > 20%

CMS selection [leptonic incl.]

(optimized for 10fb⁻¹, using genetic algorithm)

- 1 muon pT > 30 GeV
- MET > 130 GeV
- 1st, 2nd jet > 440 GeV
- 3rd jet > 50 GeV
- -0.95 < cos(MET,1stjet)<0.3

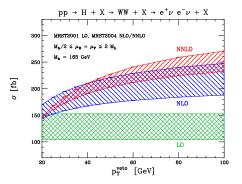

$\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots$

 $\alpha_{\rm s}\simeq 0.1$

That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

Rules of thumb: LO good to within factor of 2 NLO good to within scale uncertainty


Anastasiou, Melnikov & Petriello '04 Anastasiou, Dissertori & Stöckli '07 $\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots$

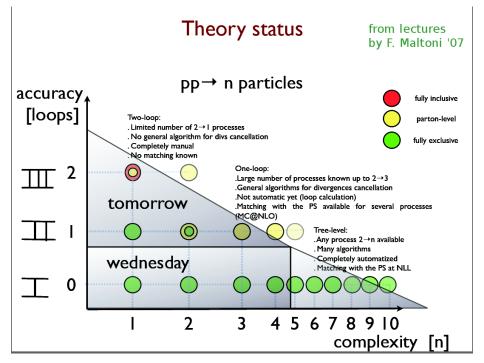
 $\alpha_{\rm s}\simeq 0.1$

That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

<u>Rules of thumb:</u> LO good to within factor of 2 NLO good to within scale uncertainty

Anastasiou, Melnikov & Petriello '04 Anastasiou, Dissertori & Stöckli '07 $\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots$

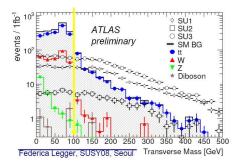

 $\alpha_{\rm s}\simeq 0.1$

That implies LO QCD (just c_0) should be accurate to within 10%

lt isn't

Rules of thumb:

LO good to within factor of 2 NLO good to within scale uncertainty

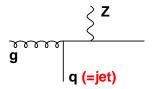

Control samples

We don't have NLO for the background (e.g. 4 jets + Z, a 2 \rightarrow 5 process).

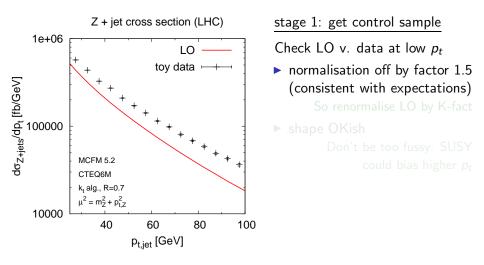
Only LO (matched with parton showers). How does one verify it?

Common procedure (roughly):

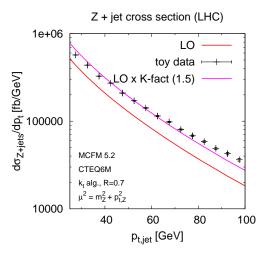
- Get control sample at low p_t
- SUSY should be small(er) contamination there
- Once validated, trust LO prediction at high-pt



A conservative QCD theory point of view:

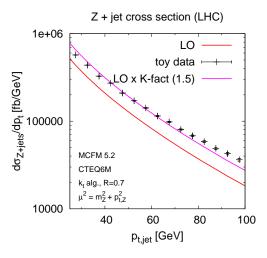

It's hard to be sure: since we can't calculate Z+4 jets beyond LO. But we would tend to think it is safe, as long as control data are within usual factor of two of LO prediction

Illustrate issues with toy example: Z+jet production


- ► It's known to NLO and a candidate for "first" 2 → 2 NNLO $\sim e^+e^- \rightarrow \gamma^*/Z \rightarrow 3$ jets, NNLO: Gehrman et al '08, Weinzierl '08
- But let's pretend we only know it to LO, and look at the pt distribution of the hardest jet (no other cuts — keep it simple)

Toy data, control sample

Toy data, control sample

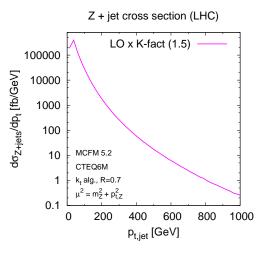

stage 1: get control sample

Check LO v. data at low p_t

 normalisation off by factor 1.5 (consistent with expectations) So renormalise LO by K-fact
 shape OKish

> Don't be too fussy: SUSY could bias higher *p*_t

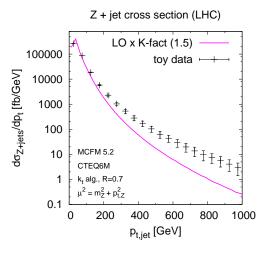
Toy data, control sample



stage 1: get control sample

Check LO v. data at low p_t

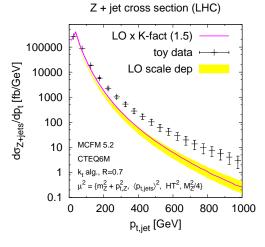
- normalisation off by factor 1.5 (consistent with expectations) So renormalise LO by K-fact
- shape OKish


Don't be too fussy: SUSY could bias higher p_t

stage 2: look at high p_t

- ▶ good agreement at low p_t, by construction
- excess of factor ~ 10 at high
 pt
- check scale dependence of LO [NB: not always done except e.g. Alwall et al. 0706.2569] still big excess

Toy data, high p_t



stage 2: look at high p_t

- ▶ good agreement at low p_t, by construction
- excess of factor ~ 10 at high
 pt

 check scale dependence of LO [NB: not always done except e.g. Alwall et al. 0706.2569] still big excess

Toy data, high p_t

stage 2: look at high p_t

- ▶ good agreement at low p_t, by construction
- excess of factor ~ 10 at high
 pt
- check scale dependence of LO [NB: not always done except e.g. Alwall et al. 0706.2569] still big excess

ls it:

- ► QCD + extra signal?
- ▶ just QCD? But then where does a *K*-factor of 10 come from?

Here it's just a toy illustration. In a year or two it may be for real:

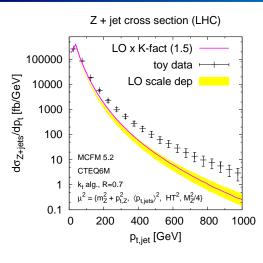
▶ Do Nature / Science / PRL accept the paper?

Discovery of New Physics at the TeV scale We report a 5.7 σ excess in MET + jets production that is consistent with a signal of new physics ...

 Do we proceed immediately with a linear collider? It'll take 10–15 years to build; the sooner we start the better
 At what energy? It would be a shame to be locked in to the wrong energy... ls it:

- ► QCD + extra signal?
- ▶ just QCD? But then where does a *K*-factor of 10 come from?

Here it's just a toy illustration. In a year or two it may be for real:


▶ Do Nature / Science / PRL accept the paper?

Discovery of New Physics at the TeV scale We report a 5.7 σ excess in MET + jets production that is consistent with a signal of new physics ...

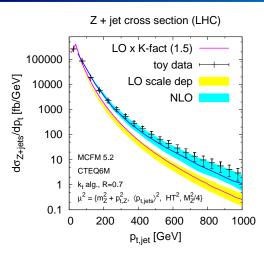
Do we proceed immediately with a linear collider? It'll take 10–15 years to build; the sooner we start the better

▶ At what energy? It would be a shame to be locked in to the wrong energy...

Open the box...

Unlike for SUSY multi-jet searches, in the Z+jet case we do have NLO.

Once NLO is included the excess disappears


The "toy data" were just the upper edge of the NLO band

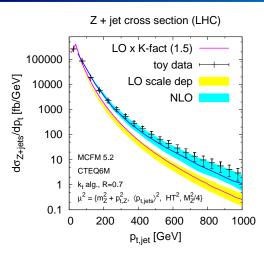
Example based on background work for Butterworth, Davison, Rubin & GPS '08

Related observations also by Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Muck '09

Hold on a second: how does QCD give a K-factor O(5 - 10)? NB: DYRAD, MCFM consistent

Unlike for SUSY multi-jet searches, in the Z+jet case we do have NLO.

Once NLO is included the excess disappears


The "toy data" were just the upper edge of the NLO band

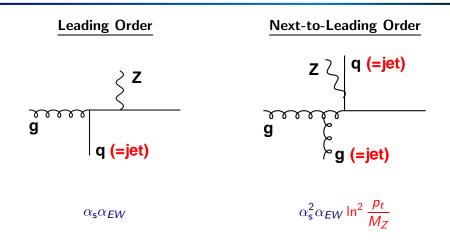
Example based on background work for Butterworth, Davison, Rubin & GPS '08

Related observations also by Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Muck '09

Hold on a second: how does QCD give a K-factor O(5-10)? NB: DYRAD, MCFM consiste

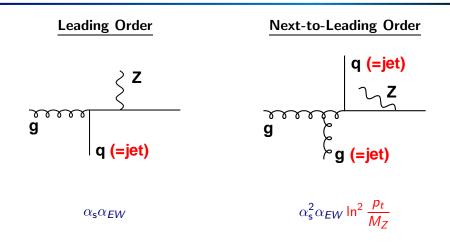
Unlike for SUSY multi-jet searches, in the Z+jet case we do have NLO.

Once NLO is included the excess disappears

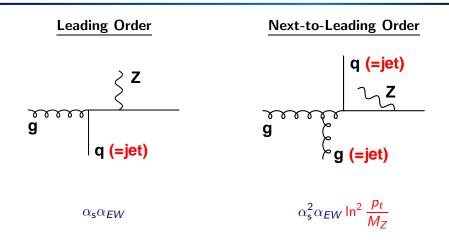

The "toy data" were just the upper edge of the NLO band

Example based on background work for Butterworth, Davison, Rubin & GPS '08

Related observations also by Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Muck '09


Hold on a second: how does QCD give a K-factor O(5-10)? NB: DYRAD, MCFM consistent QCD & Searches, G. Salam (p. 22) Predicting QCD

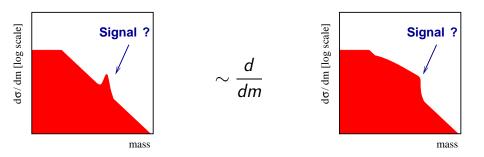
Why the large K-factor?


LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$. QCD and EW effects **mix**, EW bosons are **light**. New logarithms (enhancements) appear. QCD & Searches, G. Salam (p. 22) Predicting QCD

Why the large K-factor?

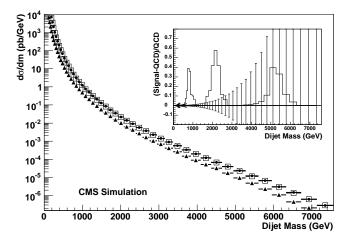
LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$. QCD and EW effects **mix**, EW bosons are **light**. New logarithms (enhancements) appear. QCD & Searches, G. Salam (p. 22) Predicting QCD

Why the large K-factor?


LHC will probe scales well above EW scale, $\sqrt{s} \gg M_Z$. QCD and EW effects **mix**, EW bosons are **light**. New logarithms (enhancements) appear.

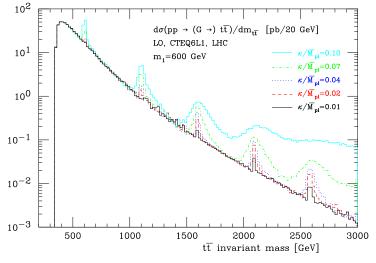
$\label{eq:Excess} \texttt{Excess} \equiv \texttt{New Physics, iff you are really, really sure you} \\ \texttt{understand backgrounds}$

- Control samples may not be good enough cross-check
- Plain LO QCD can be misleading, understanding the physics is crucial Can be non-trivial even in simplest of cases
- NLO provides a powerful cross check and progress is being made in multi-jet case, e.g. W + 3jet & ttbb calculations @ NLO BlackHat '08-; Rocket '08-; CutTools '08-; Bredenstein et al '09
- What about MLM, CKKW matching for combining different tree-level contributions? "LO++": gets much of the answer [de Visscher & Maltoni] First systematic comparisons with NLO: Melnikov & Zanderighi '09


Viewing QCD

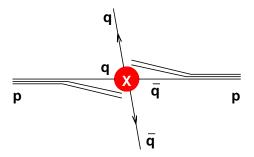
Consider case of *mass peaks* — but bear in mind that other kinematic structures are fundamentally related.

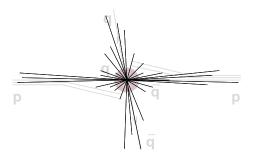
QCD & Searches, G. Salam (p. 26) Viewing QCD Some peaks are easy — QCD not needed


e.g. resonance $\rightarrow \ell^+ \ell^-$, or big broad resonance to jets

Bhatti et al (for CMS), study of dijet mass resonances (q^*) , 0807.4961

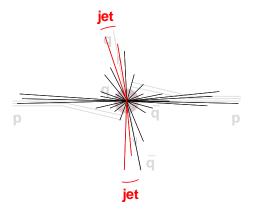
QCD & Searches, G. Salam (p. 27) Viewing QCD


Observability may depend on parameters

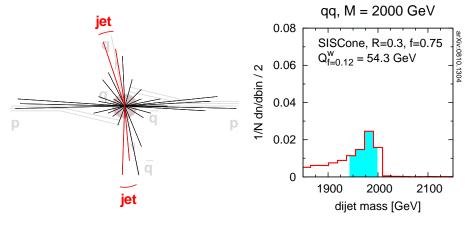

RS KK resonances, from Frederix & Maltoni, 0712.2355

Cases where QCD has the most to contribute are those that are borderline

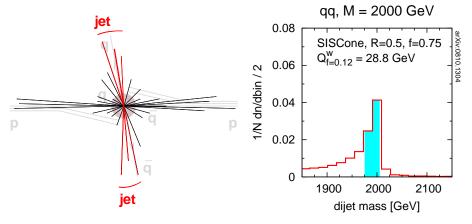
Can we make kinematic "structures" emerge more clearly?



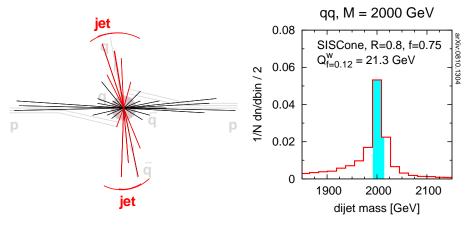
Basic question: Can we make kinematic "structures" emerge more clearly?

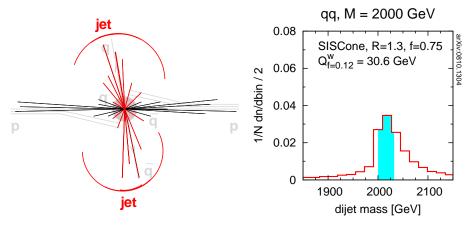

Which particles should one choose in order to best reconstruct the resonance?

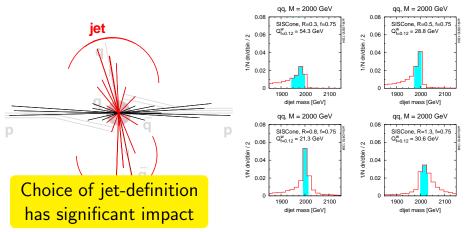
Can we make kinematic "structures" emerge more clearly?



How should one define the "jets"?

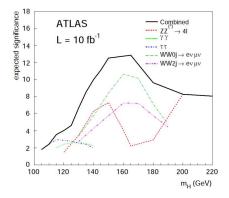

Can we make kinematic "structures" emerge more clearly?


Can we make kinematic "structures" emerge more clearly?


Can we make kinematic "structures" emerge more clearly?

Basic question: Can we make kinematic "structures" emerge more clearly?

Basic question: Can we make kinematic "structures" emerge more clearly?



As example, a Higgs-boson search illustrates two things:

- Using LHC scale hierarchy $\sqrt{s} \gg M_{EW}$ to our advantage
- Using QCD to help us extract cleaner signals

taken from Butterworth, Davison, Rubin & GPS '08

LHC search propspects

Various production & decay processes

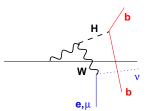
- $gg \rightarrow H \rightarrow \gamma \gamma$ feasible
- $WW \rightarrow H \rightarrow \tau \tau$ feasible
- ▶ $gg \to H \to ZZ^* \to 4\ell$ feasible

▶ $gg \rightarrow t\bar{t}H, H \rightarrow b\bar{b}$ v. hard

▶ $q\bar{q} \rightarrow WH, ZH, H \rightarrow b\bar{b}$ v. hard

QCD & Searches, G. Salam (p. 31) Viewing QCD Higgs search

$\rm WH/ZH$ search channel @ LHC

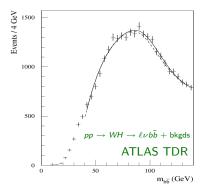

• Signal is $W \to \ell \nu$, $H \to b \overline{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t} \rightarrow \ell \nu b\bar{b} j j$, ...

Studied e.g. in ATLAS TDR

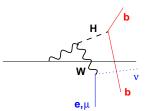
Difficulties, e.g.

- Poor acceptance (~ 12%)
 Easily lose 1 of 4 decay products
- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- ► small S/B
- Need exquisite control of bkgd shape


QCD & Searches, G. Salam (p. 31) Viewing QCD Higgs search

$\rm WH/ZH$ search channel @ LHC

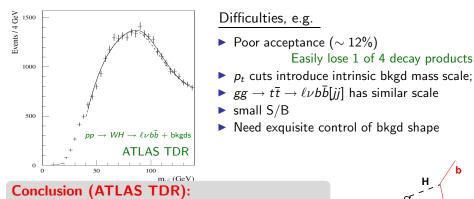
• Signal is $W \to \ell \nu$, $H \to b\bar{b}$.


• Backgrounds include $Wb\bar{b}$, $t\bar{t}
ightarrow \ell
u b\bar{b} j j$, . . .

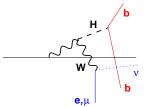
Studied e.g. in ATLAS TDR

Difficulties, e.g.

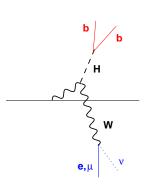
- Poor acceptance (~ 12%) Easily lose 1 of 4 decay products
- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- small S/B
- Need exquisite control of bkgd shape


QCD & Searches, G. Salam (p. 31) Viewing QCD Higgs search

$\rm WH/ZH$ search channel @ LHC

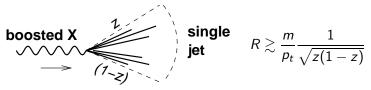

• Signal is $W \to \ell \nu$, $H \to b\bar{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t}
ightarrow \ell
u b\bar{b} j j$, . . .


Studied e.g. in ATLAS TDR

"The extraction of a signal from $H \rightarrow b\bar{b}$ decays in the WH channel will be very difficult at the LHC, even under the most optimistic assumptions [...]"

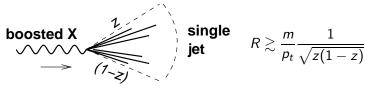
Take advantage of the fact that $\sqrt{s} \gg M_H, m_t, \ldots$


Go to high *p*_t:

- ✓ Higgs and W/Z more likely to be central
- ✓ high- p_t Z → $\nu \bar{\nu}$ becomes visible
- ✓ Fairly collimated decays: high- $p_t \ \ell^{\pm}, \nu, b$ Good detector acceptance
- ✓ Backgrounds lose cut-induced scale
- ✓ $t\overline{t}$ kinematics cannot simulate bkgd Gain clarity and S/B

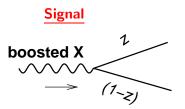
X Cross section will drop dramatically By a factor of 20 for $p_{tH} > 200 \text{ GeV}$

Will the benefits outweigh this?


Hadronically decaying Higgs boson at high p_t = single massive jet?

discussion of this & related problems: Seymour '93; Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07; Skiba & Tucker-Smith '07; Holdom '07; Baur '07; Agashe et al. '07; Lillie, Randall & Wang '07; Contino & Servant '08; Brooij-mans '08; Thaler & Wang '08; Kaplan et al '08; Almeida et al '08; [...]

What does QCD tell us about how to deal with this?


Hadronically decaying Higgs boson at high p_t = single massive jet?

discussion of this & related problems: Seymour '93; Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07; Skiba & Tucker-Smith '07; Holdom '07; Baur '07; Agashe et al. '07; Lillie, Randall & Wang '07; Contino & Servant '08; Brooij-mans '08; Thaler & Wang '08; Kaplan et al '08; Almeida et al '08; [...]

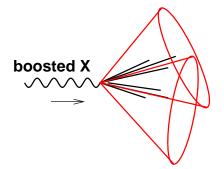
What does QCD tell us about how to deal with this?

QCD principle: soft divergence

Splitting probability for Higgs:

 $P(z) \propto 1$

Splitting probability for quark:


 $P(z) \propto rac{1+z^2}{1-z}$

1/(1-z) divergence enhances background

Remove divergence in bkdg with cut on z Can choose cut analytically so as to maximise S/\sqrt{B}

> Originally: ad-hoc cut on (related) k_t -distance Seymour '93; Butterworth, Cox & Forshaw '02

QCD principle: angular ordering

Given a color-singlet $q\bar{q}$ pair of opening angle R_{bb} :

Nearly all the radiation from the pair is contained in two cones of opening angle R_{bb} , one centred on each quark.

Standard result also in QED

Use this to capture just the radiation from the $q\bar{q}$ \Rightarrow good mass resol^{*n*}

The Cambridge/Aachen jet alg.Dokshitzer et al '97
Wengler & Wobisch '98Work out $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2$ between all pairs of objects i, j;
Recombine the closest pair;
Repeat until all objects separated by $\Delta R_{ii} > R$.

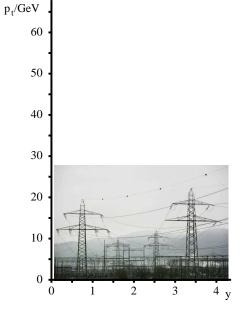
Provides a "hierarchical" view of the event; work through it backwards to analyse a jet

Implemented in FastJet Cacciari, GPS & Soyez, '05-08, http://fastjet.fr/

All MC done with Herwig 6.510 and Jimmy 4.31

$Cambridge/Aachen \ at \ work$

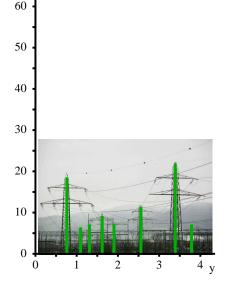
Example clustering with C/A algorithm, R = 1.0


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

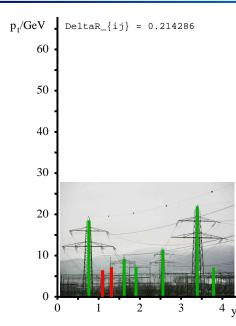
$Cambridge/Aachen \ at \ work$

Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.



 p_t/GeV

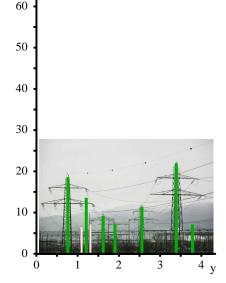

$Cambridge/Aachen \ at \ work$

Example clustering with C/A algorithm, R = 1.0

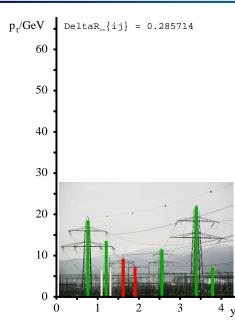
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

Cambridge/Aachen at work

Example clustering with C/A algorithm, R = 1.0


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

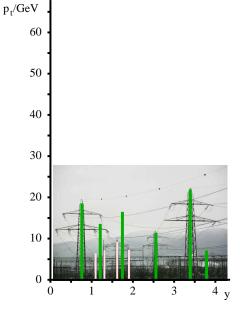
 p_t/GeV


$Cambridge/Aachen \ at \ work$

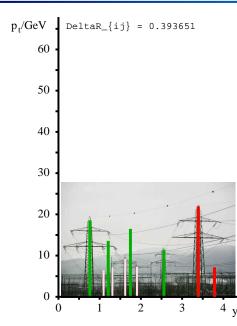
Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

Cambridge/Aachen at work

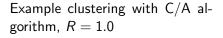

Example clustering with C/A algorithm, R = 1.0

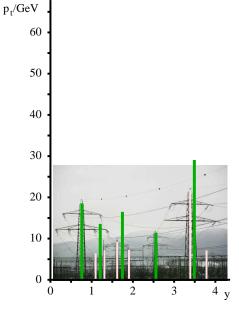
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.


$Cambridge/Aachen \ at \ work$

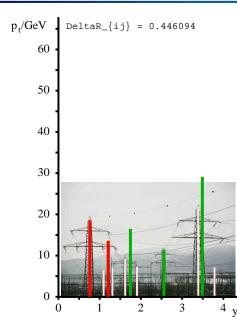
Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.


Cambridge/Aachen at work

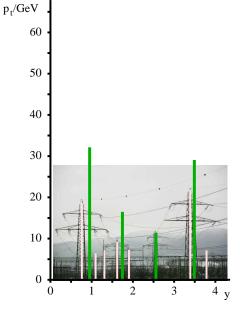

Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

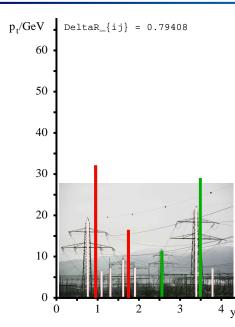

Cambridge/Aachen at work

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

Cambridge/Aachen at work


Example clustering with C/A algorithm, R = 1.0

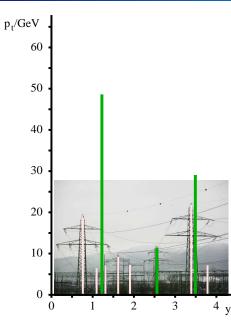
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.


Cambridge/Aachen at work

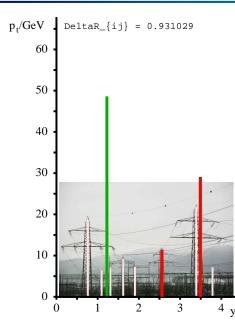
Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

Cambridge/Aachen at work


Example clustering with C/A algorithm, R = 1.0

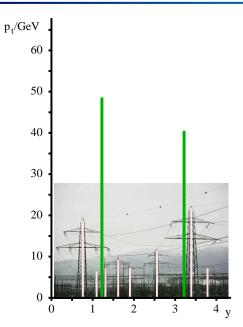
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.


$Cambridge/Aachen \ at \ work$

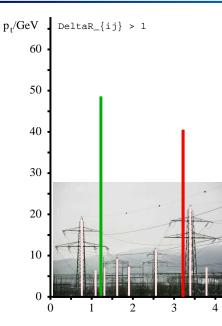
Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

Cambridge/Aachen at work


Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

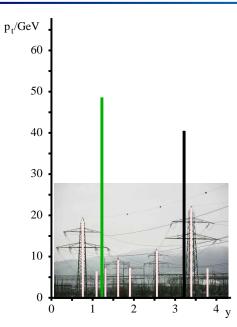

Cambridge/Aachen at work

Example clustering with C/A algorithm, R = 1.0

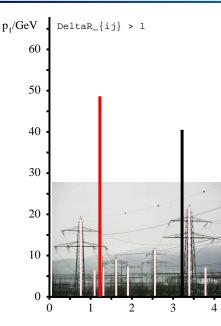
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

Cambridge/Aachen at work

V


Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.


Cambridge/Aachen at work

Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

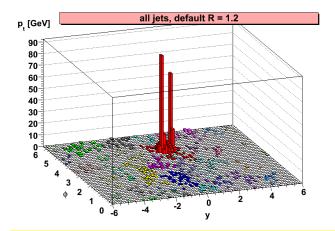
Cambridge/Aachen at work

V

Example clustering with C/A algorithm, R = 1.0

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

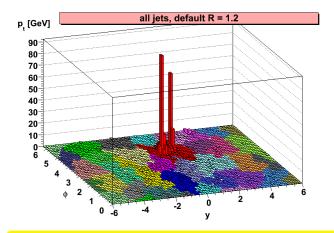
Cambridge/Aachen at work


Example clustering with C/A algorithm, R = 1.0

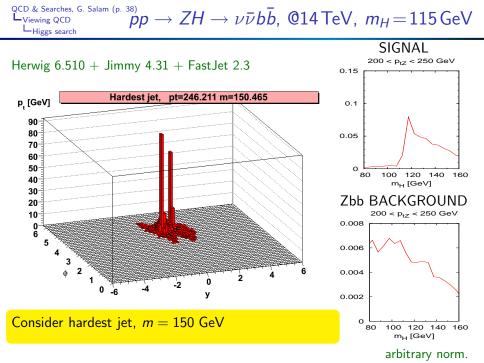
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij} > R$.

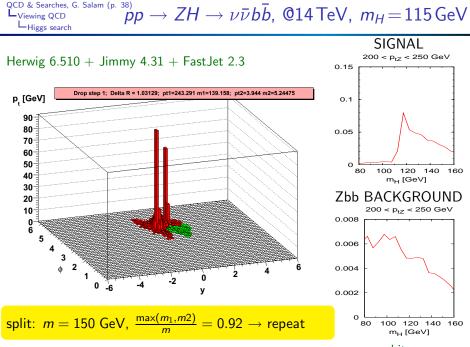
SIGNAL

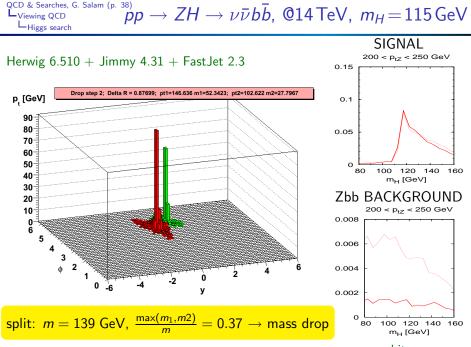
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3


Zbb BACKGROUND

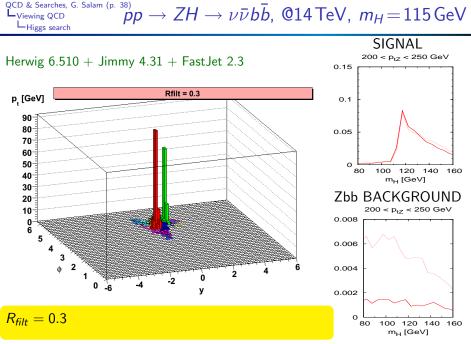
Cluster event, C/A, R=1.2

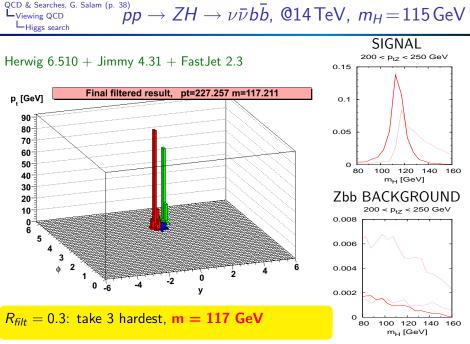

SIGNAL


Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

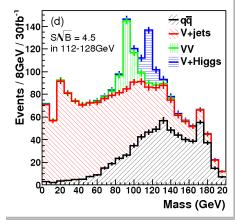

Zbb BACKGROUND

Fill it in, \rightarrow show jets more clearly




arbitrary norm.

arbitrary norm.



combine HZ and HW, $p_t > 200 \text{ GeV}$

3 channels combined

Particle-level analysis

Butterworth, Davison, Rubin & GPS '08 Herwig 6.5 + Jimmy 4.3 + FastJet 2.3 <u>3 channels:</u>

- WH, $W \rightarrow \ell \nu$ $\ell \equiv e, \mu$
- ZH, $Z \rightarrow \nu \bar{\nu}$
- ▶ ZH, $Z \rightarrow \ell^+ \ell^-$

Basic cuts:

- ▶ p_{tZ,W,H} > 200 GeV
- ► Rapidity acceptance: |y| < 2.5
- ▶ b-tagging: 60% eff, 2% fakes

At 4.5σ for 30 fb⁻¹ this looks like a possible new channel for light Higgs discovery/study. **Deserves serious exp. investigation!**

ATLAS detector-level study

Mixture of full and fast simulation for all 3 channels, combined by likelihood-based analysis, predicts signal significance for $m_H = 120$ GeV of

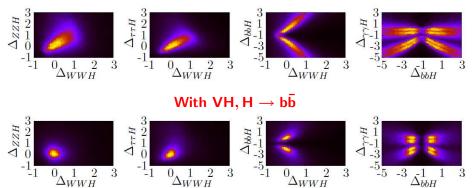
3.7 σ for 30 fb⁻¹

ATL-PHYS-PUB-2009-088

To be compared with 4.2σ in hadron-level analysis for $m_H = 120$ GeV With 5% (20%) background uncertainty, ATLAS result becomes 3.5σ (2.8 σ)

Comparison to other channels at ATLAS ($m_H = 120$, 30 fb⁻¹):

$gg \to H \to \gamma \gamma$	$WW \to H \to \tau \tau$	$gg \to H \to ZZ^*$
4.2σ	4.9σ	2.6σ


Only viable channel to see the main decay of a light Higgs, $H \rightarrow b\bar{b}$

Except perhaps boosted ttH; Plehn, GPS & Spannowsky '09

Higgs coupling measurements

You only know it's the SM Higgs if couplings agree with SM expectations. Detailed study of all observable LHC Higgs production/decay channels carried out by Lafaye, Plehn, Rauch, Zerwas, Duhrssen '09

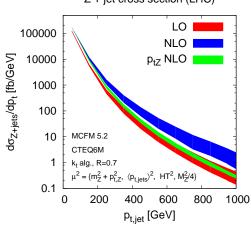
Without VH, $H \rightarrow b\bar{b}$

Without direct $H
ightarrow b ar{b}$ measurement, errors on couplings increase by $\sim 100\%$

Conclusions

We've seen examples where doing the QCD "well" makes a big difference.

From first part: it's clear that relative $\mathcal{O}(\alpha_s)$ ("the details") in QCD predictions (NLO) may be more than just a luxury refinement. Part of the motivation for the large calculational effort in the field Crucial in building confidence in our understanding of any LHC "excess"


From second part: QCD at LHC is not *just* about calculating backgrounds. Learning to "view" events properly can have a major impact.

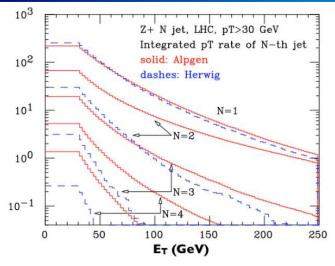
QCD can guide us in making good choices A much smaller field — but several groups making progress Crucial in order to maximise LHC's sensitivity to new physics

Common theme: LHC will probe a broad range of scales: from below EW scale, to 1.5 orders of magnitude above it. This brings challenges & opportunities.

EXTRAS

Z+jet Cross-check

Z + jet cross section (LHC)


Plot distribution for p_{t7} .

This selects events in which the Z is the hardest object.

Kills diags with EW double-logs.

NLO is well-behaved.

QCD & Searches, G. Salam (p. 46) EXTRAS Large K-factors

Mangano, 0809.1567 Not matched But see 2-jet \simeq 1-jet, which is sign of problems

0-lepton search

Is there a larger excess when plotted v. MET ($\sim p_{tZ}$)?

Is this because Eff.Mass ($\sim p_{t,jet}$) is enhanced in bkgd, but MET is not?

- □ at least 1 jet with PT>100GeV
- □ 0 lepton (e, μ) with PT > 20 GeV
- MET > 100 GeV
- MET > 0.2 effective mass
- Transverse Sphericity ST > 0.2
- Δφ(ET jet i) > 0.2 (i = 1, 2, 3)

0-1

62%

17%

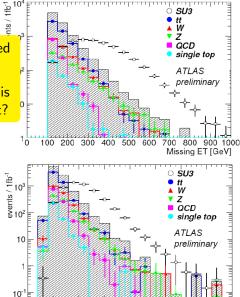
10%

10%

Federica Lego

SM

tt

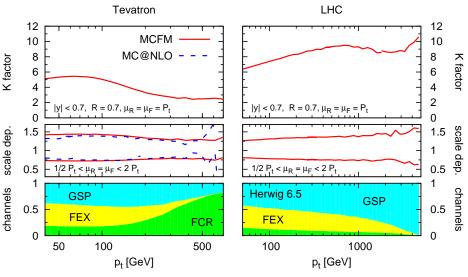

W

7

QCD

Main backgrounds:

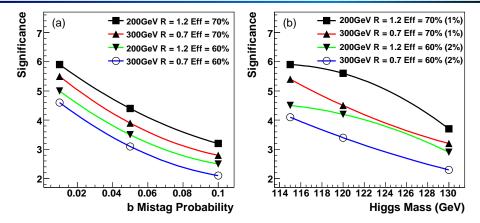
- W+jets
- Z+jets
- 🗆 QCD



2000 2500

3000 3500 4000 Effective Mass [GeV]

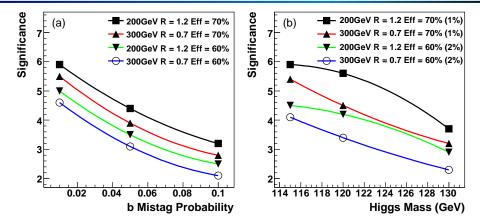
1000 1500


Another example: *b*-jet production

Banfi, GPS & Zanderighi, '07

QCD & Searches, G. Salam (p. 49) EXTRAS Boosted Higgs

Impact of *b*-tagging, Higgs mass

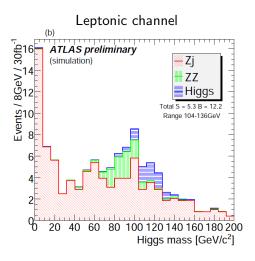


Most scenarios above 3σ

For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution] In nearly all cases, suitable for extracting $b\bar{b}H$, WWH, ZZH couplings

QCD & Searches, G. Salam (p. 49) EXTRAS Boosted Higgs

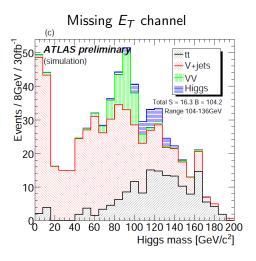
Impact of *b*-tagging, Higgs mass


Most scenarios above 3σ

For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution] In nearly all cases, suitable for extracting $b\bar{b}H$, WWH, ZZH couplings As of August 2009: ATLAS have preliminary public analysis of this channel ATL-PHYS-PUB-2009-088

What changes?

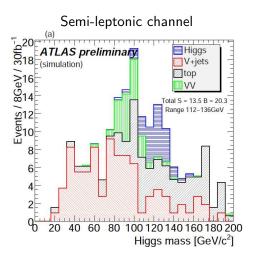
- Inclusion of detector simulation mixture of full and validated ATLFAST-II
- Study of triggers
 All OK
- ▶ New issue: importance of fake b tags from charm quarks
- ▶ New background: Wt production with $t \rightarrow bW$, $W \rightarrow cs$, giving bc as a Higgs candidate.
- ► Larger mass windows, 24 32 GeV rather than 16 GeV for signal, reflecting full detector resolution
- Various changes in details of cuts
- ▶ ATLAS numbers shown for $m_H = 120 \text{ GeV}$ (previous plots: $m_H = 115 \text{ GeV}$)


ATLAS results

What changes compared to particle-level analysis?

 $\sim 1.5 \sigma$ as compared to 2.1σ Expected given larger mass window

ATLAS results



What changes compared to particle-level analysis?

 $\sim 1.5\sigma$ as compared to 3σ Suffers: some events redistributed to semi-leptonic channel

QCD & Searches, G. Salam (p. 51) EXTRAS Boosted Higgs

ATLAS results

What changes compared to particle-level analysis?

 $\sim 3\sigma$ as compared to 3σ Benefits: some events redistributed from missing E_T channel Likelihood-based analysis of all three channels together gives signal significance of

3.7 σ for 30 fb⁻¹

To be compared with 4.2σ in hadron-level analysis for $m_H = 120$ GeV With 5% (20%) background uncertainty, ATLAS result becomes 3.5σ (2.8 σ)

Comparison to other channels at ATLAS ($m_H = 120$, 30 fb⁻¹):

$gg ightarrow H ightarrow \gamma \gamma$	$WW \to H \to \tau \tau$	$gg ightarrow H ightarrow ZZ^*$
4.2σ	4.9σ	2.6σ

Extracted from 0901.0512

ATLAS: "Future improvements can be expected in this analysis:"

- b-tagging might be calibrated [for this] kinematic region
- ▶ jet calibration [...] hopefully improving the mass resolution
- background can be extracted directly from the data
- multivariate techniques

CMS is looking at this channel

 Biggest difference wrt ATLAS could be jet mass resolution But CMS have plenty of good ideas that might compensate for worse hadronic calorimeter

Combination of different kinematic regions

- E.g. in original analysis, p_t > 300 GeV (only 1% of VH, but very clear signal) was almost as good as p_t > 300 GeV (5% of VH).
- ▶ Treating different *p*^{*t*} ranges independently may have benefits.

High- p_t top production often envisaged in New Physics processes. ~ high- p_t EW boson, but: top has 3-body decay and is coloured.

7 papers on top tagging in '08-'09 (at least): jet mass + something extra.

Questions

- What efficiency for tagging top?
- What rate of fake tags for normal jets?

Rough results for top quark with $p_t \sim 1~TeV$					
	"Extra"	eff.	fake		
[from T&W]	just jet mass	50%	10%		
Brooijmans '08	3,4 k_t subjets, d_{cut}	45%	5%		
Thaler & Wang '08	2,3 k_t subjets, z_{cut} + various	40%	5%		
Kaplan et al. '08	3,4 C/A subjets, $z_{cut} + \theta_h$	40%	1%		
Almeida et al. '08	predict mass dist ⁿ , use jet-shape	_	_		
Ellis et al. '09	C/A pruning	10%	0.05%		
ATLAS '09	3,4 k_t subjets, d_{cut} MC likelihood	90%	15%		
Plehn et al. '09	C/A mass drops, $ heta_h$ [busy evs, $p_t \sim 250$]	40%	2.5%		

$t\overline{t}H$ boosted top and Higgs together?

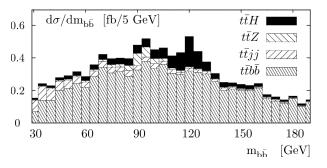
(NB: inclusive ttH deemed unviable in past years by ATLAS & CMS)

$pp ightarrow t ar{t} H$		Ask for just two boosted particles
$t \rightarrow b\ell(\not\!\!\!\!/ T)$		in order to maintain some cross-
$t \; ightarrow { ext{jjj}}$	(boosted)	section
$H ightarrow { m jet}_{bar b}$	(boosted)	Plehn, GPS & Spannowsky '09

Main ingredients

- one lepton $p_t > 15$ GeV, |y| < 2.5
- \blacktriangleright 2 C/A (R=1.5) jets with $p_T>$ 200 GeV, |y|<2.5
- Mass-drop based substructure ID With filtering to reduce UE Allow for extraneous subjets since busy environment
- After eliminating constituents from tagged hadronic top and H, require one extra b-jet (C/A, R=0.6, p_t > 40 GeV).
- Cut on mass of top candidate (and hadronic W), plot mass of Higgs candidate

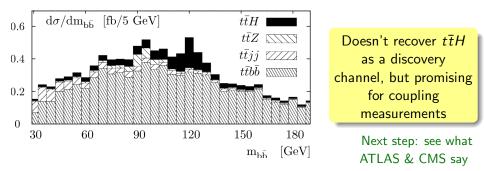
$ ho p ightarrow t ar{t} H$		Ask for just two boosted particles
$t \rightarrow b\ell(\not\!\!\! E_T)$		in order to maintain some cross-
$t ightarrow { m jet}_{jjj}$	(boosted)	section
$H ightarrow { m jet}_{bar b}$	(boosted)	Plehn, GPS & Spannowsky '09


Main ingredients

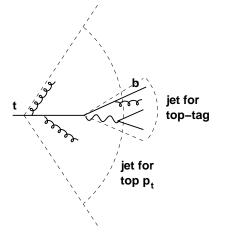
- one lepton $p_t > 15$ GeV, |y| < 2.5
- ▶ 2 C/A (R = 1.5) jets with $p_T > 200$ GeV, |y| < 2.5
- Mass-drop based substructure ID With filtering to reduce UE Allow for extraneous subjets since busy environment
- After eliminating constituents from tagged hadronic top and H, require one extra b-jet (C/A, R=0.6, p_t > 40 GeV).
- Cut on mass of top candidate (and hadronic W), plot mass of Higgs candidate

$t\bar{t}H$ results

				$S/\sqrt{B}~(100~{ m fb}^{-1})$
$m_H = 115 \mathrm{GeV}$	0.57	1.39	1/2.4	4.8
120 GeV	0 48	1 36	1/2.8	4 1
130 GeV	0.29	1.21	1/4.2	2.6


Numbers of events in 20 GeV window centred on Higgs mass, including K-factors Using 0.7/0.01 for b-tag rate/fake within subjet (cf. ATLAS '09) and 0.6/0.02 for b-tag rate/fake in "normal" jet

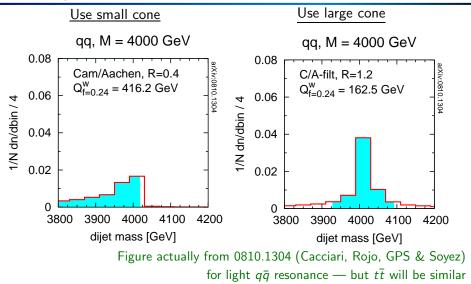
$t\bar{t}H$ results


				$S/\sqrt{B}~(100~{ m fb}^{-1})$
$m_H = 115 { m GeV}$	0.57	1.39	1/2.4	4.8
120 GeV	0.48	1.36	1/2.8	4.1
$m_{H} = 115 { m GeV} \ 120 { m GeV} \ 130 { m GeV}$	0.29	1.21	1/4.2	2.6

Numbers of events in 20 GeV window centred on Higgs mass, including K-factors Using 0.7/0.01 for b-tag rate/fake within subjet (cf. ATLAS '09) and 0.6/0.02 for b-tag rate/fake in "normal" jet

If you want to use the tagged top (e.g. for $t\bar{t}$ invariant mass) QCD tells you:

the jet you use to tag a top quark \neq the jet you use to get its p_t


Within inner cone $\sim \frac{2m_t}{p_t}$ (dead cone) you have the top-quark decay products, but no radiation from top ideal for reconstructing top mass

Outside dead cone, you have radiation from top quark

> essential for top p_t Cacciari, Rojo, GPS & Soyez '09

QCD & Searches, G. Salam (p. 59) EXTRAS Boosted top

Impact of using small cone angle

How you look at your event matters: http://quality.fastjet.fr/