Boosted Objects Theory Review

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Implications of LHC for TeV-scale Physics [WG1: Prospects for LHC searches in 2011/12: boosted Higgs, WBF, etc.]

CERN, 30 August 2011

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

Boosted massive particles, e.g.: EW bosons

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

Happens for $p_t \gtrsim 2m/R$ $p_t \gtrsim 320$ GeV for $m = m_W$, R = 0.5

As LHC starts to explore far above EW scale, such configurations become of interest

New heavy particles can decay to boosted W, Z, H, top, χ^0 (RPV); WW scattering at high ρ_t

- Ieptonic decays easily tagged, but rare and/or have MET
- hadronic decays more common and fully reconstructible

not especially Higgs oriented, except e.g. SUSY cascades → Higgs: Butterworth, Ellis & Raklev '07 Kribs, Martin, Roy & Spannowsky '09, '10

New EW-scale particles may be easier to discover at high p_t

- \blacktriangleright e.g. light Higgs with predominantly $H \rightarrow b \bar{b}$ decay, in VH and $t \bar{t} H$
- ▶ Some relevant fraction produced at high p_t ($\sqrt{s_{LHC}} \gg m_{EW}$)
- Backgrounds often fall faster than signal at high p_t
- Jet combinatorics are easier at high p_t cleaner events
- Easier to organise cuts so as not to sculpt backgrounds

Example improvement from boosted regime

Search for main decay of light Higgs boson in W/Z+H, H \rightarrow $b\bar{b}$

restricting search to $p_{tH} > 200 \text{ GeV}$ using the method from Butterworth, Davison, Rubin & GPS '08

Boosted Theory

Example improvement from boosted regime

Search for main decay of light Higgs boson in $t\bar{t}\text{+}\text{H},\,\text{H}\rightarrow\text{b}\bar{\text{b}}$

restricting search to $p_{t,H} > 200 \text{ GeV}$, $p_{t,t \rightarrow hadrons} > 200 \text{ GeV}$, one leptonic top Plehn, GPS & Spannowsky '09

- ► Resolving the underlying 1 → 2 splitting and using its characteristic kinematics to help reject background [Leading-order Structure]
- Protecting jet-mass resolution from the mess of underlying event and pileup [Non-perturbative structure]
- Exploiting different colour structures of signal and background and resulting different energy flows [Higher-order structure]

A highly active field, here just cover a handful of the main considerations

See also Boost 2010 writeup, recent Boost 2011 conference and tomorrow's WG3 session

Leading Order Structure

Common idea: undo jet clustering & cut

First proposed for W's by Seymour '93 Refined by Butterworth, Cox & Forshaw '02

Refined more + showed how to use it to find $H \rightarrow b\bar{b}$ at LHC, Butterworth, Davison, Rubin & GPS '08

Later in '08: extended to top quarks by ATLAS; Thaler & Wang; Kaplan, Rehermann, Schwartz & Tweedie [Johns Hopkins top tagger].

[LO structure]

Common idea: undo jet clustering & cut

First proposed for W's by Seymour '93 Refined by Butterworth, Cox & Forshaw '02

Refined more + showed how to use it to find $H \rightarrow b\bar{b}$ at LHC, Butterworth, Davison, Rubin & GPS '08

Later in '08: extended to top quarks by ATLAS; Thaler & Wang; Kaplan, Rehermann, Schwartz & Tweedie [Johns Hopkins top tagger].

[LO structure]

Common idea: undo jet clustering & cut

First proposed for W's by Seymour '93 Refined by Butterworth, Cox & Forshaw '02

Refined more + showed how to use it to find $H \rightarrow b\bar{b}$ at LHC, Butterworth, Davison, Rubin & GPS '08

Later in '08: extended to top quarks by ATLAS; Thaler & Wang; Kaplan, Rehermann, Schwartz & Tweedie [Johns Hopkins top tagger].

Beginning of a wave of intense activity, motivating \sim 6 dedicated workshops in 3 years

QCD principle: soft divergence

Background

Splitting probability for Higgs:

 $P(z) \propto 1$

Splitting probability for quark:

 $P(z) \propto rac{1+z^2}{1-z}$

1/(1-z) divergence enhances background

Remove divergence in bkdg with cut on z Can choose cut analytically so as to maximise S/\sqrt{B}

Originally: cut on opening angle (Seymour '93) or k_t -distance (Butterworth, Cox & Forshaw '02)

Boosted Theory

9 / 19

t ightarrow bjj decays — multiple kinematic variables

Top signal

QCD background

Using Dalitz-like plots to pull out the W without using *b* tagging Plehn, Spannowsky, Takeuchi & Zerwas '10

Different jet algs, different bkgd shaping

Noise reduction

Noise & different kinds of event

The problem of noise and contamination is common to low-lumi pp running, high-lumi LHC pp running, and even heavy-ion running

Boosted Theory

Noise & different kinds of event

The problem of noise and contamination is common to low-lumi pp running, high-lumi LHC pp running, and even heavy-ion running

Boosted Theory

Key idea:

- Look at jet on smaller angular scale
- Discard its softer parts

- Filtering
- Pruning
- Trimming

Butterworth et al '08 Ellis, Vermillion and Walsh '09

Krohn, Thaler & Wang '09

Key idea:

- Look at jet on smaller angular scale
- Discard its softer parts

- Filtering
- Pruning
- Trimming

Butterworth et al '08 Ellis, Vermillion and Walsh '09

Krohn, Thaler & Wang '09

Key idea:

- Look at jet on smaller angular scale
- Discard its softer parts

- Filtering
- Pruning
- Trimming

Butterworth et al '08 Ellis, Vermillion and Walsh '09

Krohn, Thaler & Wang '09

Noise removal from jets

- Filtering
- Pruning
- Trimming

Butterworth et al '08 Ellis, Vermillion and Walsh '09 Krohn, Thaler & Wang '09

Radiation beyond leading order

[Energy flow]

Exploiting energy-flow beyond LO structure

Background (e.g. $g \rightarrow gg$) and signal (e.g. $W \rightarrow q\bar{q}$) often have different colour structure \rightarrow different radiation patterns.

- Pull (non-boosted context)
- N-subjettiness
- "Buried Higgs" light singlets
- Boosted decision trees
- Dipolarity, applied to HEPTopTagger
- Jet deconstruction

•

Template method beyond LO

Gallicchio & Schwartz '10 Jihun Kim '10; Thaler & Van Tilburg '10 Falkowski et al '10; Chen et al '10 Cui & Schwartz '10 er Jankowiak, Hook and Wacker '11 Soper & Spannowsky '11 Almeida et al '11 cf. talk tomorrow by Gilad Perez

Matrix-element method on steroids

For each event estimate the probability that event is signal-like or background like.

Break event into many mini-jets; use Monte-Carlo type Sudakovs and splitting functions to get estimate of multi-parton matrix element for S & B hypotheses.

Intelligently combines full info about LO splitting, radiation, b-tags, etc.

Soper & Spannowsky '11

cf. also multivariate (BDT) type methods from Cui & Schwartz '10

[Energy flow]

Jet shape variables (here for top tagging)

Early proposals include planar flow (3- v. 2-body structure of top decay) Thaler & Wang '08 Almeida et al '08

Recent try: *N*-subjettiness. Break jet into subjets $1, \ldots, N$

$$\pi_N = rac{1}{
ho_{t,jet}} \sum_i
ho_{ti} \min(R_{i1},\ldots,R_{iN})$$

N-pronged decay: cut on mass &

 $\frac{\tau_N}{\tau_{N-1}}$

Combines constraints on LO structure (energy sharing among prongs) and higher-order radⁿ (from quarks in signal v. gluons in bkgd) High- p_t regime offers new perspectives on both BSM and Higgs searches.

For LHC7 and $O(1-2fb^{-1})$ luminosity, boosted techniques start to play role. For Higgs they're only at the very beginning. [See next talk!]

For Higgs, we're in a borderline region where boosted and traditional multi-jet techniques overlap; lessons about value of boosting the Higgs hold also in traditional analyses.

Meanwhile, much theory work going on to pull maximum information out of fat jets, with 20 - 100% improvements obtained relative to earlier studies.