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Many searches for New Physics (eg. SUSY) rely on
Leading Order predictions for backgrounds.

eg. Z+4jet background to gluino pair production
with NLO technology rapidly becoming mature for such cases

LO often considered good to within a factor of 2
NLO to within 10-20%

This talk is about cases where such “rules of thumb” fail
(spectacularly)
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[Introduction]

The Z+jet process
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Use MCFM to examine
various properties of such
events at LO and NLO.
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Fairly standard kind of occurrence
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[Introduction]

The Z+jet process
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p: spectrum of leading jet gets K-factor of 5-10 J

related issues in Butterworth, Davison, Rubin & GPS '08
Bauer & Lange '09; Denner, Dittmaier, Kasprzik & Much '09
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[Introduction]

The Z+jet process

LERER]

Use MCFM to examine
various properties of such
events at LO and NLO.

do/dHr jois [fb / 100 GeV]
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pp, 14 TeVv

Hy jets [GEV]

HT jets = Y icjets Pt,i gets K-factor of up to 100 J

Such things are not supposed to happen with as = 0.1!
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[Introduction] Why the large K-factors?

Leading Order Next-to-Leading Order
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[Introduction] Why the large K-factors?

Leading Order Next-to-Leading Order
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LHC probes scales well above EW scale, /s > M.

EW bosons are light. New log-enhanced topologies appear.

HT jets is extreme, because at LO H7 jets = prjer1; NLO: HT jers = 2Pt jer1
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Though we calculate Z+jet@NLO, giant K-factors really
dominated by (“LO") Z+2-parton piece of Z+jet@NLO.

We know LO calculations aren’t reliable.

We really want to combine Z+jet@NLO with
Z+2-jet@NLO

without double counting

without having to do full Z+jet@NNLO calculation
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First try the following:

Take the “leading” process
[Z + jet @ LO]

and add in process with one extra jet.
[i.e. include Z + 2 jets @ LO]

approximate the 1-loop Z+jet term, by requiring
cancellation of all divergences
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[LoopSim]

e cartoon of the LoopSim idea
SUBTRACT
— &
+ f—
Z+parton Z+2partons Z+1parton

softest particle of Z+2 is "looped"
=removed from event (kinematics reshuffled)

» For every Z + 2 parton (2 — 3) event, figure out what what 2 — 2 event

it would really have come from “Loop” the softest parton

[Don't actually explicitly calculate any loop diagrams: simulate the loops]

» Subtract that 2 — 2 event Unlike MLM, no cutoffs on 2 — 3 events

If done properly, divergences will cancel
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LBl cartoon of LoopSim “looping” procedure

[The idea)

(a) Input event (b) Attributed emission seq. (c) Born particle ID
1 1 1
2 2 2
4 1/ 4 4
\

ba

(d) Output 1-loop event (e) 2nd output 1-loop event  (f) Output 2-loop even

3 3

N\ N

» Use jet algorithm to assign a branching structure to event ala CKKWJ

» The particles that are softest are the ones that will be “looped”
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[LoopSim]

L T e fiea nLO accuracy

Define operators:

Us(event E) = all simulated /-loop events from E

Uy(event) = Z Us(event)
=0

“U" stands for unitarisation (cancellation of all divergences)
sum of all diagrams (essentially) adds up to zero

To combine Z+j with Z+2j take
Z+j0nLO = Z+4jOLO + Uy(Z+2j0LO)

=

we use “NLO” to emphasize that this is a crude approximation
to an actual NLO calculation — the exact loops are missing
NB: Uy here includes £ =0, 1
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[LoopSim]

L frhe fies nLO results (K-factors, normalised to LO)

.
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When the K-factors are large, nLO agrees well with NLO J

MLM matching also does a similar job
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Differences between and LoopSim and
MLM/CKKW matching:

1. Does not rely on shower ([J: simple; [t not easily
integrated with shower MCs)

2. Does not need arbitrary separation of Z+1/7+2/etc.
samples with (hard-to-choose) momentum cutoff

3. Can easily be extended beyond LO matching

2011-01-07 11 / 18



Hiat nNLO: merging Z+j and Z+2j, both @NLO

Just replace simulated loops with exact loops
Apply LoopSim to exact 1-loop to get (e.g.) simulated 2-loop terms

E, ¢ = event with n partons and / exact loops
Uy, = operator to apply when £ exact loops known

Uv,1(Eno) = Uy(Enp) — Uy (U1(Enyp))
Uy 1(En1) = Uy(En1)

Z+j@ANLO = Z+j@NLO + Uy 1(Z+2j@NLO

only)

Extension to NLO, NNLO, multi-leg, etc. is almost trivial in LoopSimJ

Not the case in methods that merge with parton showers too
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Testing NLO Merging, in 3 processes
1. ZONLO with Z+jGNLO
2. Z+jONLO with Z42jGNLO

3. 2JGNLO with 3jGNLO
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e Validation: Drell-Yan lepton p;, ANLO v. NNLO
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Z (i.e. DY) with Z+j from MCFM & LoopSim



[LoopSim]
L[ANLO]

Validation: Drell-Yan lepton p;, ANLO v. NNLO
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Leepim Validation: Drell-Yan lepton p;, ANLO v. NNLO
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[LoopSim]

ey nNLO for Z+j observables
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LoopSim - .
Hiat nNLO for Z+j observables
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[LoopSim]

ey nNLO for Z+j observables

HT, jets = 3 jets Pt.j
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Lo What's the problem with H7?

Hr (effective mass) type observables are widely used in searches
» Hr has a steeply falling distribution (like py;, pez)

» At each order (NLO, NNLO), an extra (soft) jet contributes to the
Ht sum e.g. from ISR

» That shifts Hr up, which translates to a substantial increase in the
cross section

We can test this hypothesis for plain jet events, using a truncated sum,

n
HT,n = E Pt jeti
i=1
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[LoopSim]

g Hr » in (di)jet events
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A clear message:
for a process with n objects at lowest order, use Hr ,

Do you know what gets used in your experiment'’s searches?
Many writers of LHC SUSY proceedings didn't...
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[Closing]

Some take-home messages

Be aware that giant K-factors exist

Always look one order beyond the leading order, for example with
MLM /CKKW matching

New tool to get good predictions in such cases: LoopSim
Basically an “operator” to generate approximations to unknown loops
Combine Z+jONLO, Z+2jONLO to get “ANLO" Z+jet

It sometimes works even beyond “giant-K-factor” regions

Watch out for Ht

Even for simple processes, it converges very poorly
unless you define it carefully (limit number of objects in sum)
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EXTRAS
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e Add Z+1jet, Z+2jet + shower

Z+parton
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e Add Z+1jet, Z+2jet + shower

shower Z+parton
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e Add Z+1jet, Z+2jet + shower

shower Z+parton Z+2partons
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e Add Z+1jet, Z+2jet + shower

shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon
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e e Add Z+1jet, Z+2jet + shower

DOUBLE
COUNTING

=+
s

shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon

Z + parton implicitly includes part of Z + 2 partons
It's just that the 2nd parton isn’t always explicitly “visible”
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Al S cartoon of MLM merging of Z+j and Z+2j

shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon
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frpl I cartoon of MLM merging of Z+j and Z+2j

ACCEPT ACCEPT REJECT

shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon
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frpl I cartoon of MLM merging of Z+j and Z+2j

ACCEPT ACCEPT REJECT

shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon

» MLM merging relies on parton shower to help figure out what fraction of
Z + parton is really Z + 2 partons.

» Our aim is to do that without the parton shower
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[Extras]

T Testing Alpgen + Herwig + MLM Matching
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[Extras]

AT Testing Alpgen + Herwig + MLM Matching

p: of Z-boson
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[Extras]

T Testing Alpgen + Herwig + MLM Matching

p: of jet 1
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[Extras]

T Testing Alpgen + Herwig + MLM Matching

p: of jet 1
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[Extras]

AT Testing Alpgen + Herwig + MLM Matching

p: of jet 1
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[Extras]

T Testing Alpgen + Herwig + MLM Matching

HT, jets = 3 jets Pt.j
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[Extras]

T Testing Alpgen + Herwig + MLM Matching

HT, jets = Zjets Ptj
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pp, 14 TeV
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[Extras]

AT Testing Alpgen + Herwig + MLM Matching

HT, jets = Zjets Ptj
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