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Outline

• Top quarks v. top jets, as a function of pt 

• Understanding taggers

• Pileup and boosted tops

• Top kinematics at high pt

2



Gavin Salam (CERN)

Top quarks,
Tops from quark-jets &

Top fat-jets
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3-jet mass or fat-jet mass v. boost
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Which boosted
top tagger?
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 Some elements to think about when choosing
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Many different top taggers

6

Jet Substructure at the Tevatron and LHC 37

(a) herwig (b) herwig, fractional di↵erence

(c) herwig++ (d) herwig++, fractional di↵erence

(e) sherpa (f) sherpa, fractional di↵erence

Figure 17. Mis-tag vs. e�ciency for several top tagging methods, as tested on
herwig 6.5 and herwig++ tt̄ and dijet samples as well as sherpa matched
tt̄ + jets and multijet samples, all with pT 500–600 GeV. Events have been
run through a simple detector simulation. In the right-hand plots, results after
detector simulation are compared with results before simulation; the y axis
is (✏B(detector) � ✏B(no detector))/✏B(no detector). All plots use the input
parameters in Table 2.

from Boost 2011 proceedings
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Different fat-jet tagger types
Radiation based

(e.g. N-subjettiness = τ3/τ2
+ mass cut)

• Requires top-mass 
consistency (maybe with 
some grooming)

• Exploits weaker radiation 
from top (3 quarks) than 
background (1q+2g or 
3g)
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Prong based

(e.g. HEPTopTagger, 
Template Tagger)

• Identifies prongs

• Requires prongs be 
consistent with 
kinematics of  
t→Wb→ 3 quarks
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Figure 28: Left: signal efficiency for boosted top ID, εt, and fake-tag rates for quark and gluon
jets (εq, εg, both multiplied by 10 for visibility) for the Kaplan et al. C/A-based top-tagger, as a
function of jet pt (reproduced from [173]). Right: the use of two jet sizes for top reconstruction:
the inner cone, of order a few times m/pt, includes the top decay products, but excludes radiation
from the top quark itself (dead-cone). To capture that radiation and reconstruct the correct top
pt, one should use the outer cone.

and CMS have used the anti-kt algorithm for finding jets in this initial data. These are
welcome developments given the importance of IRC safety for straightforward comparisons
with perturbative QCD predictions and for the use of perturbative methods in generally
thinking about jets.

The second main development is that theoretical work has started on the question
of how best to use jets in an LHC-type environment. This is an important question
because the LHC spans two orders of magnitude in jet energy and has substantial (and
variable) pileup, and no single jet definition will work optimally for the whole range of
LHC phenomena.

Progress has been outlined here (section 4) on our analytical understanding of how jets
behave, and in section 5 we have seen a handful of examples that benefited significantly
from the use of the “right” jet-finding approach. Currently these two aspects of work on jets
are connected qualitatively: the understanding of section 4 helped to interpret the results
and inspire some of the methods of section 5. However a rigorous, quantitative link is still
missing, and section 5 in any case covered only a small fraction of the possible use-cases
for jets. This highlights a clear path for future work: that of bringing our analytical tools
to bear on the full range of uses of jets at the LHC, so as to identify optimal jet-finding
solutions across the board.
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In boosted regime

Use output of a 3-pronged 
tagger when checking for 
consistency with the top 

mass

Use the original fat jet as an 
input to the di-“top” mass 

spectrum in searches
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Understanding Taggers

It’s becoming clear that even simple taggers can be 
complicated objects.

They need to be understood and stress tested:

• Over a broad range of pt and mass scales

• For different kinds of:
        event (signal, background),
        calculation (parton shower, NLO, NNLO) &
        experimental conditions (e.g. pileup)

9



Gavin Salam (CERN) 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.001  0.01  0.1  1

 10  100  1000

m
/m

 d
m

 / 
dm

m/pt

m [GeV], for pt = 4 TeV

Pythia 6 D
W

, parton-show
er level, no U

E, pp 14 TeV, pt,gen  > 4 TeV, qq A
 qq, R

 = 1

plain jet mass

An example in the context of 2-pronged taggers
(testing on background [quark] jets)

Dasgupta, Fregoso, Marzani & GPS, forthcoming



Gavin Salam (CERN) 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.001  0.01  0.1  1

 10  100  1000

m
/m

 d
m

 / 
dm

m/pt

m [GeV], for pt = 4 TeV

Pythia 6 D
W

, parton-show
er level, no U

E, pp 14 TeV, pt,gen  > 4 TeV, qq A
 qq, R

 = 1

plain jet mass
Mass-drop tagger (ycut=0.09, µ=0.67)

Pruner (zcut=0.1)

Trimmer (zcut=0.1, Rtrim=0.2)

An example in the context of 2-pronged taggers
(testing on background [quark] jets)

Dasgupta, Fregoso, Marzani & GPS, forthcoming

Different taggers
are apparently
quite similar
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But only for a 
limited range 

of masses
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Infrared safety
The IR safety 

problem was a long-
standing one for 
basic jet finding.

Let’s make sure it 
doesn’t sneak back 

in for boosted-object 
tagging.
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N-subjettiness τ3 / τ2:
τ2 measures departure from 2-parton energy flow
τ3 measures departure from 3-parton energy flow

2 hard partons
2 soft partons

τ2 ≪ 1
τ3 ≪ 1
τ3/τ2 ∼1 

}However soft the 
two gluons, you 
get finite τ3/τ2  

That’s IR unsafe
Cacciari et al ’12: easily cured with extra cut on τ2 / τ1
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Pileup in the 
boosted regime
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Pronged top taggers
Some have pileup-reduction built in (HEPTopTagger, 
Template), essentially by using small (R~0.2–0.3) sub-
cones, sometimes dynamically adjusted to the top pt 

For heavy pileup you will need to supplement them with 
full pileup subtraction (e.g. area-based).

[Technically trivial, but so far studied 
only for filtering & trimming]

Shape-based taggers
Until recently, no clear way of subtracting pileup.

15
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Pileup subtraction for shapes

16

2

and collinear safe jet shapes,2 without the need for ded-
icated analytic study of each individual shape variable.
It also involves an extension of the original area–median
prescription to account for hadron masses.
The first ingredient is a characterisation of the average

pileup density in a given event in terms of two variables,
ρ and ρm, such that the 4-vector of the expected pileup
deposition in a small region of size δyδφ can be written

[ ρ cosφ, ρ sinφ, (ρ+ ρm) sinh y, (ρ+ ρm) cosh y ] δyδφ ,
(1)

where ρ and ρm have only weak dependence on y (and
φ). Relative to the original area–median proposal [23], a
novelty here is the inclusion of a term ρm. It arises be-
cause pileup consists of low-pt hadrons, and their masses
are not negligible relative to their pt (cf. also [32, 33]).
It is important mainly for observables sensitive to differ-
ences between energy and 3-momentum, e.g. jet masses,
as we will see below.
The second and main new ingredient is a determina-

tion, for a specific jet, of the shape’s sensitivity to pileup.
Let the shape be defined by some function V ({pi}jet) of
the momenta pi in the jet. Among these momenta, we
include a set of “ghosts” [21], very low momentum par-
ticles that cover the y − φ plane at high density, each
of them mimicking a pileup-like component in a region
of area Ag. We then consider the derivatives of the jet
shape with respect to the transverse momentum scale,
pt,g, of the ghosts and with respect to a component

mδ,g ≡
√
m2

g + p2t,g − pt,g,

V (n,m)
jet ≡ An+m

g ∂n
pt,g

∂m
mδ,g

V ({pi}jet) . (2)

The derivatives are to be evaluated at pt,g = mδ,g = 0,
and by scaling all ghost momenta simultaneously.
Given the level of pileup, ρ, ρm, and the information

on the derivatives, one can then extrapolate the value of
the jet’s shape to zero pileup,

Vjet,sub = Vjet − ρV (1,0)
jet − ρmV (0,1)

jet

+
1

2
ρ2V (2,0)

jet +
1

2
ρ2mV (0,2)

jet + ρρmV (1,1)
jet + · · · . (3)

where the formula takes into account the fact that the
derivatives are evaluated for the jet including the pileup.
Handling derivatives with respect to both pt,g andmδ,g

can be cumbersome in practice. An alternative is to
introduce a new variable rt,g and set pt,g = rt,g and
mδ,g = ρm

ρ rt,g. We then take total derivatives with re-
spect to rt,g

V [n]
jet ≡ An

g

dn

drnt,g
V ({pi}jet) , (4)

2 For the correction of collinear unsafe quantities, e.g. fragmenta-
tion function moments, as used for quark/gluon discrimination
in [30], see [31].

so that the correction can be rewritten

Vjet,sub = Vjet − ρV [1]
jet +

1

2
ρ2V [2]

jet + · · · . (5)

The derivatives V (m,n) or V [n]
jet can be determined

numerically, for a specific jet, by rescaling the ghost
momenta and reevaluating the jet shape for multiple
rescaled values. Typically this is more stable with Eq. (4)
and this is the approach we use below.
To investigate the performance of our correction pro-

cedure, we consider a number of jet shapes:

• Angularities [12, 34], adapted to hadron-collider
jets as θ(β) =

∑

i pti∆Rβ
i,jet/

∑

i pti, for β =

0.5, 1, 2, 3; θ(1), the “girth”, “width” or “broaden-
ing” of the jet, has been found to be particularly
useful for quark/gluon discrimination [17, 35].

• Energy-energy-correlation (EEC) moments, advo-
cated for their resummation simplicity in [36],
E(β) =

∑

i,j ptiptj∆Rβ
i,j/(

∑

i pti)
2, using the same

set of β values. EEC-related variables have been
studied recently also in [37].

• “Subjettiness” ratios, designed for char-
acterising multi-pronged jets [13–15]:

one defines the subjettiness τ (axes,β)N =
∑

i pti min(∆Ri1, . . . ,∆RiN )β/
∑

i pti, where
∆Ria is the distance between particle i and axis a,
where a runs from 1 to N . One typically considers
ratios such as τ21 ≡ τ2/τ1 and τ32 ≡ τ3/τ2 (the
latter used e.g. in a recent search for R-parity
violating gluino decays [38]); we consider β = 1 and
β = 2, as well as two choices for determining the
axes: “kt”, which exploits the kt algorithm [39, 40]
to decluster the jet to N subjets and then uses
their axes; and “1kt”, which adjusts the “kt”
axes so as to obtain a single-pass approximate
minimisation of τN [15].

• A longitudinally invariant version of the planar
flow [11, 12], involving a 2 × 2 matrix Mαβ =
∑

i pti(αi − αjet)(βi − βjet), where α and β corre-
spond either to the rapidity y or azimuth φ; the
planar flow is then given by Pf = 4λ1λ2/(λ1+λ2)2,
where λ1,2 are the two eigenvalues of the matrix.

One should be aware that observables constructed from
ratios of shapes, such as τn,n−1 and planar flow, are not
infrared and collinear (IRC) safe for generic jets. In par-
ticular Pf and τ21 are IRC safe only when applied to jets
with a structure of at least two hard prongs, usually guar-
anteed by requiring the jets to have significant mass; τ32
requires a hard three-pronged structure,3 a condition not

3 Consider a jet consisting instead of just two hard particles with

Cacciari, Dutta, JH Kim, GPS & Soyez ’12

Ghost area

Shape as a function of
particle momenta in jet

nth derivative of 
shape wrt ghost 

momenta
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and collinear safe jet shapes,2 without the need for ded-
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prescription to account for hadron masses.
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ρ and ρm, such that the 4-vector of the expected pileup
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where ρ and ρm have only weak dependence on y (and
φ). Relative to the original area–median proposal [23], a
novelty here is the inclusion of a term ρm. It arises be-
cause pileup consists of low-pt hadrons, and their masses
are not negligible relative to their pt (cf. also [32, 33]).
It is important mainly for observables sensitive to differ-
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Let the shape be defined by some function V ({pi}jet) of
the momenta pi in the jet. Among these momenta, we
include a set of “ghosts” [21], very low momentum par-
ticles that cover the y − φ plane at high density, each
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of area Ag. We then consider the derivatives of the jet
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so that the correction can be rewritten
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cated for their resummation simplicity in [36],
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• “Subjettiness” ratios, designed for char-
acterising multi-pronged jets [13–15]:

one defines the subjettiness τ (axes,β)N =
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∑

i pti, where
∆Ria is the distance between particle i and axis a,
where a runs from 1 to N . One typically considers
ratios such as τ21 ≡ τ2/τ1 and τ32 ≡ τ3/τ2 (the
latter used e.g. in a recent search for R-parity
violating gluino decays [38]); we consider β = 1 and
β = 2, as well as two choices for determining the
axes: “kt”, which exploits the kt algorithm [39, 40]
to decluster the jet to N subjets and then uses
their axes; and “1kt”, which adjusts the “kt”
axes so as to obtain a single-pass approximate
minimisation of τN [15].

• A longitudinally invariant version of the planar
flow [11, 12], involving a 2 × 2 matrix Mαβ =
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spond either to the rapidity y or azimuth φ; the
planar flow is then given by Pf = 4λ1λ2/(λ1+λ2)2,
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and collinear safe jet shapes,2 without the need for ded-
icated analytic study of each individual shape variable.
It also involves an extension of the original area–median
prescription to account for hadron masses.
The first ingredient is a characterisation of the average

pileup density in a given event in terms of two variables,
ρ and ρm, such that the 4-vector of the expected pileup
deposition in a small region of size δyδφ can be written

[ ρ cosφ, ρ sinφ, (ρ+ ρm) sinh y, (ρ+ ρm) cosh y ] δyδφ ,
(1)

where ρ and ρm have only weak dependence on y (and
φ). Relative to the original area–median proposal [23], a
novelty here is the inclusion of a term ρm. It arises be-
cause pileup consists of low-pt hadrons, and their masses
are not negligible relative to their pt (cf. also [32, 33]).
It is important mainly for observables sensitive to differ-
ences between energy and 3-momentum, e.g. jet masses,
as we will see below.
The second and main new ingredient is a determina-

tion, for a specific jet, of the shape’s sensitivity to pileup.
Let the shape be defined by some function V ({pi}jet) of
the momenta pi in the jet. Among these momenta, we
include a set of “ghosts” [21], very low momentum par-
ticles that cover the y − φ plane at high density, each
of them mimicking a pileup-like component in a region
of area Ag. We then consider the derivatives of the jet
shape with respect to the transverse momentum scale,
pt,g, of the ghosts and with respect to a component

mδ,g ≡
√
m2

g + p2t,g − pt,g,

V (n,m)
jet ≡ An+m

g ∂n
pt,g

∂m
mδ,g

V ({pi}jet) . (2)

The derivatives are to be evaluated at pt,g = mδ,g = 0,
and by scaling all ghost momenta simultaneously.
Given the level of pileup, ρ, ρm, and the information

on the derivatives, one can then extrapolate the value of
the jet’s shape to zero pileup,

Vjet,sub = Vjet − ρV (1,0)
jet − ρmV (0,1)

jet

+
1

2
ρ2V (2,0)

jet +
1

2
ρ2mV (0,2)

jet + ρρmV (1,1)
jet + · · · . (3)

where the formula takes into account the fact that the
derivatives are evaluated for the jet including the pileup.
Handling derivatives with respect to both pt,g andmδ,g

can be cumbersome in practice. An alternative is to
introduce a new variable rt,g and set pt,g = rt,g and
mδ,g = ρm

ρ rt,g. We then take total derivatives with re-
spect to rt,g

V [n]
jet ≡ An

g

dn

drnt,g
V ({pi}jet) , (4)

2 For the correction of collinear unsafe quantities, e.g. fragmenta-
tion function moments, as used for quark/gluon discrimination
in [30], see [31].

so that the correction can be rewritten

Vjet,sub = Vjet − ρV [1]
jet +

1

2
ρ2V [2]

jet + · · · . (5)

The derivatives V (m,n) or V [n]
jet can be determined

numerically, for a specific jet, by rescaling the ghost
momenta and reevaluating the jet shape for multiple
rescaled values. Typically this is more stable with Eq. (4)
and this is the approach we use below.
To investigate the performance of our correction pro-

cedure, we consider a number of jet shapes:

• Angularities [12, 34], adapted to hadron-collider
jets as θ(β) =

∑

i pti∆Rβ
i,jet/

∑

i pti, for β =

0.5, 1, 2, 3; θ(1), the “girth”, “width” or “broaden-
ing” of the jet, has been found to be particularly
useful for quark/gluon discrimination [17, 35].

• Energy-energy-correlation (EEC) moments, advo-
cated for their resummation simplicity in [36],
E(β) =

∑

i,j ptiptj∆Rβ
i,j/(

∑

i pti)
2, using the same

set of β values. EEC-related variables have been
studied recently also in [37].

• “Subjettiness” ratios, designed for char-
acterising multi-pronged jets [13–15]:

one defines the subjettiness τ (axes,β)N =
∑

i pti min(∆Ri1, . . . ,∆RiN )β/
∑

i pti, where
∆Ria is the distance between particle i and axis a,
where a runs from 1 to N . One typically considers
ratios such as τ21 ≡ τ2/τ1 and τ32 ≡ τ3/τ2 (the
latter used e.g. in a recent search for R-parity
violating gluino decays [38]); we consider β = 1 and
β = 2, as well as two choices for determining the
axes: “kt”, which exploits the kt algorithm [39, 40]
to decluster the jet to N subjets and then uses
their axes; and “1kt”, which adjusts the “kt”
axes so as to obtain a single-pass approximate
minimisation of τN [15].

• A longitudinally invariant version of the planar
flow [11, 12], involving a 2 × 2 matrix Mαβ =
∑

i pti(αi − αjet)(βi − βjet), where α and β corre-
spond either to the rapidity y or azimuth φ; the
planar flow is then given by Pf = 4λ1λ2/(λ1+λ2)2,
where λ1,2 are the two eigenvalues of the matrix.

One should be aware that observables constructed from
ratios of shapes, such as τn,n−1 and planar flow, are not
infrared and collinear (IRC) safe for generic jets. In par-
ticular Pf and τ21 are IRC safe only when applied to jets
with a structure of at least two hard prongs, usually guar-
anteed by requiring the jets to have significant mass; τ32
requires a hard three-pronged structure,3 a condition not

3 Consider a jet consisting instead of just two hard particles with

Subtracted shape pileup density
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FIG. 1: Impact of pileup and subtraction on various jet-shape distributions and their averages, in dijet, WW and tt̄ production
processes. The distributions are shown for Poisson distributed pileup (with an average of 30 pileup events) and the averages
are shown as a function of the number of pileup events, nPU. The shapes are calculated for jets with pt > 500 GeV (the cut is
applied before adding pileup, as are the cuts on the jet mass mJ and subjettiness ratio τ21 where relevant).

imposed in previous work, and that we will apply here
through a cut on τ21.

For the angularities and EECmoments we have verified
that the first two numerically-obtained derivatives agree
with analytical calculations in the case of a jet consisting
of a single hard particle. For variables like τN that involve
a partition of a jet, one subtlety is that the partitioning
can change as the ghost momenta are varied to evaluate
the numerical derivative. The resulting discontinuities
(or non-smoothness) in the observable’s value would then
result in nonsensical estimates of the derivatives. We
find no such issue in our numerical method to evaluate
the derivatives, but were it to arise, one could choose to
force a fixed partitioning.

pt = 1000 GeV, with φ = 0, 0.5 and two further soft particles
with pt = ε, at φ = 0.05, 0.1, all particles having y = 0. It
is straightforward to see that τ32 is finite and independent of ε
for ε → 0, which results in an infinite leading-order perturbative
distribution for τ32.

To test the method in simulated events with pileup,
we use Pythia 8.165, tune 4C [41, 42]. We consider
3 hard event samples: dijet, WW and tt̄ production,
with hadronic W decays, all with underlying event (UE)
turned off (were it turned on, the subtraction proce-
dure would remove it too). We use anti-kt jets [43]
with R = 0.7, taking only those with pt > 500 GeV
(before addition of pileup). All jet-finding is performed
with FastJet 3.0 [44]. The determination of ρ and ρm
for each event follows the area–median approach [23]:
the event is broken into patches and in each patch one
evaluates pt,patch =

∑

i∈patch pt,i, as well as mδ,patch =
∑

i∈patch

(

√
m2

i + p2t,i−pti
)

, where the sum runs over par-
ticles i in the patch. Then ρ and ρm are given by

ρ = median
patches

{

pt,patch
Apatch

}

, ρm = median
patches

{

mδ,patch

Apatch

}

,

(6)
where Apatch is the area of each patch. To obtain the
patches we cluster the event with the kt algorithm with
R = 0.4. The median helps limit the results’ sensitivity
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FIG. 1: Impact of pileup and subtraction on various jet-shape distributions and their averages, in dijet, WW and tt̄ production
processes. The distributions are shown for Poisson distributed pileup (with an average of 30 pileup events) and the averages
are shown as a function of the number of pileup events, nPU. The shapes are calculated for jets with pt > 500 GeV (the cut is
applied before adding pileup, as are the cuts on the jet mass mJ and subjettiness ratio τ21 where relevant).

imposed in previous work, and that we will apply here
through a cut on τ21.

For the angularities and EECmoments we have verified
that the first two numerically-obtained derivatives agree
with analytical calculations in the case of a jet consisting
of a single hard particle. For variables like τN that involve
a partition of a jet, one subtlety is that the partitioning
can change as the ghost momenta are varied to evaluate
the numerical derivative. The resulting discontinuities
(or non-smoothness) in the observable’s value would then
result in nonsensical estimates of the derivatives. We
find no such issue in our numerical method to evaluate
the derivatives, but were it to arise, one could choose to
force a fixed partitioning.

pt = 1000 GeV, with φ = 0, 0.5 and two further soft particles
with pt = ε, at φ = 0.05, 0.1, all particles having y = 0. It
is straightforward to see that τ32 is finite and independent of ε
for ε → 0, which results in an infinite leading-order perturbative
distribution for τ32.

To test the method in simulated events with pileup,
we use Pythia 8.165, tune 4C [41, 42]. We consider
3 hard event samples: dijet, WW and tt̄ production,
with hadronic W decays, all with underlying event (UE)
turned off (were it turned on, the subtraction proce-
dure would remove it too). We use anti-kt jets [43]
with R = 0.7, taking only those with pt > 500 GeV
(before addition of pileup). All jet-finding is performed
with FastJet 3.0 [44]. The determination of ρ and ρm
for each event follows the area–median approach [23]:
the event is broken into patches and in each patch one
evaluates pt,patch =

∑

i∈patch pt,i, as well as mδ,patch =
∑

i∈patch

(

√
m2

i + p2t,i−pti
)

, where the sum runs over par-
ticles i in the patch. Then ρ and ρm are given by

ρ = median
patches

{

pt,patch
Apatch

}

, ρm = median
patches

{

mδ,patch

Apatch

}

,

(6)
where Apatch is the area of each patch. To obtain the
patches we cluster the event with the kt algorithm with
R = 0.4. The median helps limit the results’ sensitivity
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FIG. 1: Impact of pileup and subtraction on various jet-shape distributions and their averages, in dijet, WW and tt̄ production
processes. The distributions are shown for Poisson distributed pileup (with an average of 30 pileup events) and the averages
are shown as a function of the number of pileup events, nPU. The shapes are calculated for jets with pt > 500 GeV (the cut is
applied before adding pileup, as are the cuts on the jet mass mJ and subjettiness ratio τ21 where relevant).

imposed in previous work, and that we will apply here
through a cut on τ21.

For the angularities and EECmoments we have verified
that the first two numerically-obtained derivatives agree
with analytical calculations in the case of a jet consisting
of a single hard particle. For variables like τN that involve
a partition of a jet, one subtlety is that the partitioning
can change as the ghost momenta are varied to evaluate
the numerical derivative. The resulting discontinuities
(or non-smoothness) in the observable’s value would then
result in nonsensical estimates of the derivatives. We
find no such issue in our numerical method to evaluate
the derivatives, but were it to arise, one could choose to
force a fixed partitioning.

pt = 1000 GeV, with φ = 0, 0.5 and two further soft particles
with pt = ε, at φ = 0.05, 0.1, all particles having y = 0. It
is straightforward to see that τ32 is finite and independent of ε
for ε → 0, which results in an infinite leading-order perturbative
distribution for τ32.

To test the method in simulated events with pileup,
we use Pythia 8.165, tune 4C [41, 42]. We consider
3 hard event samples: dijet, WW and tt̄ production,
with hadronic W decays, all with underlying event (UE)
turned off (were it turned on, the subtraction proce-
dure would remove it too). We use anti-kt jets [43]
with R = 0.7, taking only those with pt > 500 GeV
(before addition of pileup). All jet-finding is performed
with FastJet 3.0 [44]. The determination of ρ and ρm
for each event follows the area–median approach [23]:
the event is broken into patches and in each patch one
evaluates pt,patch =

∑

i∈patch pt,i, as well as mδ,patch =
∑

i∈patch

(

√
m2

i + p2t,i−pti
)

, where the sum runs over par-
ticles i in the patch. Then ρ and ρm are given by

ρ = median
patches

{

pt,patch
Apatch

}

, ρm = median
patches

{

mδ,patch

Apatch

}

,

(6)
where Apatch is the area of each patch. To obtain the
patches we cluster the event with the kt algorithm with
R = 0.4. The median helps limit the results’ sensitivity
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FIG. 1: Impact of pileup and subtraction on various jet-shape distributions and their averages, in dijet, WW and tt̄ production
processes. The distributions are shown for Poisson distributed pileup (with an average of 30 pileup events) and the averages
are shown as a function of the number of pileup events, nPU. The shapes are calculated for jets with pt > 500 GeV (the cut is
applied before adding pileup, as are the cuts on the jet mass mJ and subjettiness ratio τ21 where relevant).

imposed in previous work, and that we will apply here
through a cut on τ21.

For the angularities and EECmoments we have verified
that the first two numerically-obtained derivatives agree
with analytical calculations in the case of a jet consisting
of a single hard particle. For variables like τN that involve
a partition of a jet, one subtlety is that the partitioning
can change as the ghost momenta are varied to evaluate
the numerical derivative. The resulting discontinuities
(or non-smoothness) in the observable’s value would then
result in nonsensical estimates of the derivatives. We
find no such issue in our numerical method to evaluate
the derivatives, but were it to arise, one could choose to
force a fixed partitioning.

pt = 1000 GeV, with φ = 0, 0.5 and two further soft particles
with pt = ε, at φ = 0.05, 0.1, all particles having y = 0. It
is straightforward to see that τ32 is finite and independent of ε
for ε → 0, which results in an infinite leading-order perturbative
distribution for τ32.

To test the method in simulated events with pileup,
we use Pythia 8.165, tune 4C [41, 42]. We consider
3 hard event samples: dijet, WW and tt̄ production,
with hadronic W decays, all with underlying event (UE)
turned off (were it turned on, the subtraction proce-
dure would remove it too). We use anti-kt jets [43]
with R = 0.7, taking only those with pt > 500 GeV
(before addition of pileup). All jet-finding is performed
with FastJet 3.0 [44]. The determination of ρ and ρm
for each event follows the area–median approach [23]:
the event is broken into patches and in each patch one
evaluates pt,patch =

∑

i∈patch pt,i, as well as mδ,patch =
∑

i∈patch

(

√
m2

i + p2t,i−pti
)

, where the sum runs over par-
ticles i in the patch. Then ρ and ρm are given by

ρ = median
patches

{

pt,patch
Apatch

}

, ρm = median
patches

{

mδ,patch

Apatch

}

,

(6)
where Apatch is the area of each patch. To obtain the
patches we cluster the event with the kt algorithm with
R = 0.4. The median helps limit the results’ sensitivity

Correcting the τ32 distribution
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Are top pairs in 
high-pt events always

back-to-back?

An 8 TeV study with POWHEG, top-pair production, no 
decay and no parton showering (to keep things simple) 

A reminder that top-quarks at LHC are almost “light”
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Concluding remarks

We’re at a stage where we know it’s feasible to study 
and use tops across a range of pt’s, from low to high

But we shouldn’t forget the field is still young:

‣ connection between low and high-pt regions still delicate

‣ taggers work, but still have surprises in store for us

‣ high-pt top-physics is rich – differences between top jets 
and top quarks; new top-pair topologies
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