

BOOSTED TOPS AND HEAVY-ION COLLISIONS A YOCTOSECOND CHRONOMETER?

Gavin Salam, CERN work in progress with Liliana Apolinário, Guilherme Milhano and Carlos Salgado

Boost 2016, Zurich, July 2016

this talk is about developing methods to measure time on scale of 1fm/c ~ 10⁻²⁴ s (1 yoctosecond)

1) one day we might discover new particle(s). Can we find new ways of measuring or constraining their lifetime?

2) in heavy-ion collisions, dynamics of the early universe takes place on timescale of 1-5fm/c.Can we time-resolve it?

QUARK-GLUON PLASMA

Deconfined state of quarks and gluons:

- ► first few µs of our universe
- first few fm/c of heavy-ion collisions

As a parton goes through the quark-gluon plasma, it loses energy.

Amount (and pattern) of energy loss tells you about the medium. Interpretation of existing data is still an open topic.

magnitude of effects? Look at $Z - jet p_T$ balance

TIME DEPENDENCE

- Most probes of the HI medium involve an integral over time (e.g. jet quenching, thermal photons), or come from freezeout (hadrons)
- Can we find probes where we can control the time when they interact with the medium?

top quarks and W's have finite lifetime (and decay to jets)

top quark @ rest	~0.15 fm/c
W boson @ rest	~0.10 fm/c

- you can control the lifetime by selecting the p_T of the top (or W) and exploiting time dilation
- colour singlet qqbar from W doesn't start interacting with medium right away — the q and qbar need to decohere

$$t_d = \left(\frac{3}{\hat{q}\theta_{q\bar{q}}^2}\right)^{1/3}$$

 \hat{q} is parameter of medium ~ $4 \,\mathrm{GeV}^2/\mathrm{fm}$ $\theta_{q\bar{q}}$ is quark-antiquark opening angle Mehtar-Tani, Salgado & Tywoniuk, <u>1205.5739</u>

top + W decay + decoh.

HL-LHC

- ► 5.5 TeV/nucleon
- ► 10 nb⁻¹
- ► A = 208 (Pb)
- 0–10% centrality
 (~42% of ttbar events)

FCC-hh

- ► 39 TeV/nucleon
- ► 30 nb⁻¹
- ► A = 208 (Pb)
- 0–10% centrality
 (~42% of ttbar events)

For this talk, we're concentrating on FCC-hh Plan to see later if anything is possible at LHC

simulation: POWHEG + Pythia 8; no HI background; no physics backgrounds

EVENT SELECTION & RECONSTRUCTION

Basic event selection & object defn

- require 1 muon with p_T > 25 GeV, |η| < 2.5 (in real world, require MET?)
- anti-k_T jets, R=0.3, p_T > 30 GeV, |y| < 2.5 (in real world, HI background would need to be subtracted)

EVENT SELECTION & RECONSTRUCTION

Basic event selection & object defn

- require 1 muon with p_T > 25 GeV, |η| < 2.5 (in real world, require MET?)
- anti-k_T jets, R=0.3, p_T > 30 GeV, |y| < 2.5 (in real world, HI background would need to be subtracted)

Hadronic top reconstruction

- recluster each jet with k_T, R=1, decluster with d_{cut}=(30 GeV)², replace each original jet with result of declustering
- from new list of jets, require 2 b-tagged ones (70% eff./b-tag);
 b-jet further from muon is candidate for b from hadronic-top
- ► require ≥ 2 non-b-tagged; two highest-p_T ones \rightarrow hadronic W

not super-optimised, but insensitive to soft radiation and functional in boosted and non-boosted regimes

key observable: reconstructed W mass (here shown without quenching)

key observable: reconstructed W mass (here shown with quenching)

reconstructed W mass v. p_T

NAIVE TIME-DEPENDENCE MODEL

energy loss is:

- ► medium has constant density for time *T*, then vanishes
- > W decoheres at time t (a function of p_t , etc.)

$$\frac{\Delta E}{E} = 10\% \cdot \frac{(T-t)}{T}$$

neglects evolution of medium density, medium expansion, L² proportionality of energy loss, geometry of collision v. W production, etc.

NAIVE TIME-DEPENDENCE MODEL

energy loss is:

- ► medium has constant density for time *T*, then vanishes
- > W decoheres at time t (a function of p_t , etc.)

$$\frac{\Delta E}{E} = 10\% \cdot \frac{(T-t)}{T}$$

neglects evolution of medium density, medium expansion, L² proportionality of energy loss, geometry of collision v. W production, etc.

CONCLUSIONS

- ➤ Top & W finite lifetimes (+qqbar decoherence time) mean top → W →jets may quench differently from normal hadronic jets
- By controlling boost of top quark, you can control time when jets interact with the heavy-ion medium. Unique means to learn about medium's time structure.
- ► Gives information in range 0.5 fm/c 5 fm/c with $p_T < 1 \text{ TeV}$
- ► Some info maybe even accessible at HL-LHC (p_T < 200 GeV)

 [if a new particle decays hadronically, and is produced with a big cross section, quenching of its decay jets could tell you about its lifetime]

BACKUP

NUMBER OF HADRONIC TOPS WITH $P_{\rm T}$ above some threshold

DISTRIBUTIONS OF DECAY + DECOHERENCE TIME FOR W V. TOP P_T

