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Nearly all of it is QCD
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The core of hadron-collider 
QCD is parton distribution 

functions (PDFs)
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ASYMPTOTIC FREEDOM IN PARTON LANGUAGE 
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A novel derivation of the Q2 dependence of quark and gluon densities (of given 
helicity) as predicted by quantum chromodynamies is presented. The main body of 
predictions of the theory for deep-inleastic scattering on either unpolarizedor polarized 
targets is re-obtained by a method which only makes use of the simplest tree diagrams 
and is entirely phrased in parton language with no reference to the conventional operator 
formalism. 

I .  Introduction 

The quark parton model [1 ] provides us with a very useful and simple description 
of the physics of  deep inelastic phenomena [2]. The theoretical framework which 
justifies the parton model is given by the asymptotically free gauge theory of  strong 
interactions based on the color degrees of  freedom [3] (quantum chromodynamics, 
QCD). Although scaling is predicted to be broken by logarithms (a fact which appears 
to be well consistent with present experiments), the deviations from scaling can be 
and have been computed for deep inelastic structure functions for either unpolarized 
[4,5] or polarized targets [6,7]. In the leading logarithmic approximation, the results 
can again be phrased in the parton language by assigning a well determined Q2 depend. 
ence to the parton densities. In spite of  the relative simplicity of the final results, 
their derivation, although theoretically rigorous, is somewhat abstract and formal, 
being formulated in the language of  renormalization group equations for the coeffi- 
cient functions of  the local operators which appear in the light cone expansion for 
the product of  two currents. 

* On leave of absence from the Istituto di Fisica dell'Universit~ di Roma. 
** Laboratoire propre du CNRS associ6 ~ l'Ecole Normale Sup&ieure et ~ l'Universit~ de Paris- 

Sud. Postal address: 24, rue Lhomond, 75231 Paris Cedex 05, France. 
*** On leave of absence from the Laboratori Nazionali di Frascati. 
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QCD lecture 2 (p. 17)

Initial-state splitting

1st order analysis
Summary so far

! Collinear divergence for incoming partons not cancelled by virtuals.
Real and virtual have different longitudinal momenta

! Situation analogous to renormalization: need to regularize (but in IR
instead of UV).

Technically, often done with dimensional regularization

! Physical sense of regularization is to separate (factorize) proton
non-perturbative dynamics from perturbative hard cross section.

Choice of factorization scale, µ2, is arbitrary between 1 GeV2 and Q2

! In analogy with running coupling, we can vary factorization scale and get
a renormalization group equation for parton distribution functions.

Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)

Q2

increase

Q2

increase

u
u
u

g
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gd
u
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It is convenient to rewrite eq. (18) in the form 
1 1 

qNS(x, t )+ dqNS(x, t) = f dy f dz 6(zy-x)qNS(v,/)[8(Z-- 1) + ~ P(z)dt 1 . 
o o (20)  

The meaning of this equation is clear. Given a quark with momentum y there is a 
chance that is radiates a gluon, thus reducing its energy f romy to x. The quantity 

+ d ~ q q  = ~ (z  - 1) + 2-~P(z) dt (21) 

is the probability density of finding, inside a quark, another quark with fraction z 
of the parent momentum. The change with t of this probability produces the varia- 
tion of the quark distribution function. Thus P(z) a/27r is the variation per unit t 
at order a of the probability density of finding inside a quark another quark with 
fraction z of the parent momentum. 

We now drop the restriction to one flavour and to non-singlet densities. In parton 
language a singlet density is in general a combination of the sum of all quark and 
antiquark densities and of the gluon density inside the proton. We therefore intro- 
duce G(x, t) as the density of gluons (summed over colors) inside the proton in the 
P~o frame. We can now directly write down the integro-differential equations that 
describe the Qz dependence in the general case. They are 

i 2f dqi(x, t) _vt(t) l dy 
dt 27r J y j:l 

dG(x, t) _ o~t) if dy 
dt 2~ f l y  ]=1 

qJ(y, t) Pqiqj(y) + G(y, t) PqiG(y )l , 

qIO', t)PGqJ(y)+ G(y, t)PGG (y)I.  

(22) 

(23) 

Here the indices i andj run over quarks and antiquarks of all flavours. The number 
of quarks as seen by the current changes by two mechanisms: a quark originally at 
higher energy may loose momentum by radiating a gluon, or, a gluon inside the pro- 
ton may produce a quark-antiquark pair. Similarly the number of gluons changes 
because a quark may radiate a gluon or because a gluon may split into a quark-anti- 
quark pair or into two gluons. This last possibility is typical of non-Abelian gauge 
theories where a three gluon vertex exists to order g (while the four gluon vertex 
is of order g2). 

Some properties of the functions P(z) appearing in eqs. (22), (23) are immediately 
derived from the fact that color and flavour commute. First Pqiqj is diagonal in 
quark indices because a gluon is emitted without flavour exchange, 

eqiqj = ~i] e q q  • (24) 

Moreover, when we neglect all masses, the probability of emitting a gluon is the 

Quantum mechanics 
made probabilistic
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This probabilistic “picture”,  
 so clear in the AP paper 
underpins the rest of 

 QCD at LHC
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This probabilistic “picture”,  
 so clear in the AP paper 
underpins the rest of 

 QCD at LHC
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A summary of DGLAP’s 
influence at the LHC
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×15

DGLAP 
evolution 

changes parton 
distributions by 

factors ~ 10 
Higgs cross 

section (13 TeV) 
would be 6x 

smaller without 
DGLAP

nowadays, used at NNLO, thanks  
 to Moch, Vermaseren & Vogt
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Figure 6: The Born-level distributions of (1/�) d�/dp``T for the combination of the electron-pair and muon-pair
channels, shown in six m`` regions for |y`` | < 2.4. The central panel of each plot shows the ratios of the values from
the individual channels to the combined values, where the error bars on the individual-channel measurements rep-
resent the total uncertainty uncorrelated between bins. The light-blue band represents the data statistical uncertainty
on the combined value and the dark-blue band represents the total uncertainty (statistical and systematic). The �2

per degree of freedom is given. The lower panel of each plot shows the pull, defined as the di↵erence between the
electron-pair and muon-pair values divided by the uncertainty on that di↵erence.
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WHAT ACCURACY DO WE NEED? E.G. FOR LONG-TERM HIGGS PRECISION
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µ��

Naive extrapolation suggests LHC has long-term  
potential to do Higgs (and much other) physics at 1% accuracy

naively extrapolate 7/8 TeV results (based on lumi and σ)

NAIVELY EXTRAPOLATE 7+8 TEV RESULTS (based on lumi and σ)
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AT
LA

S

today’s  
TH syst

CM
S

no TH syst.
50% TH syst.

Extrapolation suggests that 
we get value from full lumi 
only if we aim for O(1%) 

or better precision

official HL-LHC  
forecasts



how well do we know  
the parton distributions?

21
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x

PDF uncertainties (Q = 100 GeV)
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up (PDF4LHC15)

1%
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photon

strange
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➤ core partons 
(up, down, 
gluon) are 
quite well 
known ~2% 

➤ strangeness 
~10%
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x

PDF uncertainties (Q = 100 GeV)

photon (NNPDF23)

strange (PDF4LHC15)

up (PDF4LHC15)

1%

10%

100%

0.0001 0.001 0.01 0.1 1

photon

strange

up

➤ core partons 
(up, down, 
gluon) are 
quite well 
known ~2% 

➤ strangeness 
~10%

➤ one other parton, the photon, is debated.  
The only model-independent determination 
(NNPDF23qed) has O(100%) uncertainty



IT MATTERS FOR DI-LEPTON, DI-BOSON, TTBAR, EW HIGGS, ETC.
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FIG. 7. (a) Prediction of the DY+PI dilepton spectrum for the 100 NNPDF replicas. (b) central value for the DY (black line)
and DY+PI (red line) dilepton spectrum from NNPDF including the PDF error band for the two cases. (c) Relative impact of
the PDF uncertainties with (magenta line) and without (blue line) the PI contribution. Standard acceptance cuts are applied
(|⌘l| < 2.5 and plT > 20 GeV).

on the central value. The methods are basically two. CTEQ and MRST apply the Hessian method that exploits
PDF eigenvalues [10, 43]. In this approach, the error is estimated from the standard deviation of a limited number
of central values coming from the di↵erence of paired PDF fits (order 20 pair of fits). The other procedure consists
in applying the replicas method and is adopted by the NNPDF collaboration. The error on the PDF central value
is computed as the standard deviation of a large set of replicas (order 100) that represent other possible fits of the
experimental data [29, 31]. For any observable, the central value is defined as the average of the di↵erent replicas and
its error is given by the standard deviation as summarized by the following equations

O0 = hOi = 1

N

NX

k=1

Ok, (III.1)

(�O)2 =
1

N

NX

k=1

(Ok �O0)
2, (III.2)

where Ok (k = 1, ..., N) are the N replicas. Following this approach, we have evaluated the di↵erential cross section
for the hundred NNPDF replicas for both the DY and PI processes. The good quality of the quark (antiquark) fit
translates into a rather satisfactory prediction for the DY dilepton spectrum. This is shown in Fig. 5a where we plot
the dilepton invariant mass distribution for all the replicas. The result of the averaging procedure gives the central
value and the error band visible in Fig. 5b.
At the LHC RunII with 13 TeV, the PDF uncertainty coming from the large-x region is pushed towards higher dilepton
invariant masses, compared to RunI. More in detail, the relative PDF error grows above 10% for Mll � 4 TeV and
goes up sharply to 80% at the LHC potential edge around Mll ' 6 TeV, as shown in Fig.5c. The theoretical error on
the DY process initiated by a quark-antiquark interaction looks reasonably under control over a large portion of the

Accomando et al,  
1606.06646

di-lepton spectrum

normal DY 
contribution

photon-induced contribution 
and uncertainty [NNPDF23]



PHOTON PDF ESTIMATES (not exhaustive)
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elastic inelastic in  
LHAPDF?

Gluck Pisano Reya 2002 dipole model ✘

MRST2004qed ✘ model ✓

NNPDF23qed no separation; fit to data ✓

CT14qed ✘ model  
(data-constrained) ✓

CT14qed_inc dipole model  
(data-constrained) ✓

Martin Ryskin  
2014

dipole  
(only electric part) model ✘

Harland-Lang, Khoze 
Ryskin 2016 dipole model ✘

elastic: Budnev, Ginzburg,  
 Meledin, Serbo, 1975



YOU SHOULDN’T NEED A MODEL  
ep scattering (i.e. structure functions) contains all info about proton’s EM field

Manohar, Nason, GPS  
& Zanderighi, to appear

to extract it, we’ll study  a hypothetical (“BSM”) heavy-neutral lepton  
production process
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proton

neutral lepton l  
(massless)

heavy neutral lepton L  
(mass M)

2

e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ �

p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where q = k � k0, Q2 = �q2, W
µ⌫

(p, q) is the pro-
ton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
is the lep-

tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M2 � m2

p

, where
p
s is the centre-of-mass en-

ergy and m
p

the proton mass, one obtains

� =
c
0

2⇡

Z
1

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2+

2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

�
2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/s, Q2

min

= x2m2

p

/(1�z), Q2

max

= M2/(1�
z) and c

0

= 16⇡2/⇤2.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
�2+3z� z2+

zp
�q

(z)

✓
ln

M2

µ2

+ ln
(1� z)2

z

◆#
e2
q

�
aq

+ . . . , (5)

with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1

x

dz

z

(Z µ2

1�z

Q

2

min

dQ2

Q2

↵2(Q2)

" 
2� 2z + z2 +

2x2m2

p

Q2

!
F
2

(x/z,Q2)

� z2F
L

⇣x
z
,Q2

⌘#
� ↵2(µ2)z2F

2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. The last term in this equa-
tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

=
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

=
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q2 > x2m2

p

/(1 � x), which implies that the

Wµ⌫(p, q)

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]⇥ 2⇡�((k � q)2 �M2)

STEP 1 
work out a cross section (exact) in terms of F2 and FL struct. fns.

hadronic tensor,  
known in terms of F2 and FL
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STEP 2 
work out same cross section in terms of a photon distribution

�̂�

✓
M

2

xs

, µ
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◆

f�/p(x, µ
2)

� = c0

X

a

Z
dx

x

�̂a

✓
M

2

xs

, µ

2

◆
xfa/p

�
x, µ

2
�



Result is in MSbar scheme & consistent with  
2015 de Florian, Rodrigo, Sborlini O(ααs) Pγx QED split.fns.
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STEP 3 
equate them to deduce the photon distribution (LUXqed)
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e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ �

p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
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(p, q) is the pro-
ton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
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tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
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, where
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The same result in terms of parton distributions can
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with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2
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⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵
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L)n, the second one is
of order ↵2(↵
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L)n. We neglect terms that would be of
order ↵3L(↵
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L)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
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where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. The last term in this equa-
tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,
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=
[G

E

(Q2)]2 + [G
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1 + ⌧
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where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
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(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q2 > x2m2
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/(1 � x), which implies that the
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PHOTON PDF ESTIMATES (not exhaustive)
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elastic inelastic in  
LHAPDF?

Gluck Pisano Reya 2002 dipole model ✘

MRST2004qed ✘ model ✓

NNPDF23qed no separation; fit to data ✓

CT14qed ✘ model  
(data-constrained) ✓

CT14qed_inc dipole model  
(data-constrained) ✓

Martin Ryskin  
2014

dipole  
(only electric part)

model ✘

Harland-Lang, Khoze 
Ryskin 2016 dipole model ✘

LUXqed 2016 data data soon



DATA SOURCES – various fits to F2, FL & elastic form factors
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DATA SOURCES – various fits to F2, FL & elastic form factors
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Figure 1: Elastic form factors (ratio to standard dipole form) as fitted by the A1 collabo-
ration [B+14]. Left: electric. Right: magnetic.
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Figure 2: Elastic contribution to f�/p(x,Q2) with various fits for the form factors, nor-
malised to the result obtained with the A1 world fit, including polarised data. The ratio
freezes above x = 0.9 because the A1 fits extends only up Q2 = 10GeV2 and beyond that
scale we simply extrapolate the results for GE/M(Q2) using the standard-dipole shape,
normalised to GE/M(10GeV2). [Should we try to do this better? Maybe x > 0.9
not so critical for now.]
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Figure 9: HERMES data for the photon-proton cross section σp
L+T as a function of W 2, together

with world data and the results from the GD11-P fit (central curves) and its uncertainties (outer
curves), in bins of Q2. The data points denoted ’real photon’ are for photoproduction. Inner error
bars are statistical uncertainties, while outer error bars are total uncertainties calculated as the
sum in quadrature of all statistical and systematic uncertainties including normalization.
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PHOTON UNCERTAINTY (1-2%) COMPARED TO OTHER FLAVOURS
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PDF uncertainties (Q = 100 GeV)
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γγ luminosity
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APPLICATION TO HIGGS PHYSICS
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pp → H W+ (→ l+ν) + X  at 13 TeV

non-photon induced contributions 91.2 ± 1.8 fb

photon-induced contribs (NNPDF23) 6.0 +4.4–2.9 fb

photon-induced contribs (LUXqed) 4.4 ± 0.1 fb

non-photon numbers from LHCHXSWG



CLOSING REMARKS

➤ LHC physics would be unrecognisable without Guido’s 
contributions, first and foremost the simple physical picture 
contained in the DGLAP equations. 

➤ Parton distribution functions are among the crucial inputs to 
LHC physics, with significant open problems still to solve 
today. 

➤ More generally, Guido’s dedication, his combination of breadth 
and attention to detail, all serve as a model for what a 
physicist may aspire to.
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FIG. 7. (a) Prediction of the DY+PI dilepton spectrum for the 100 NNPDF replicas. (b) central value for the DY (black line)
and DY+PI (red line) dilepton spectrum from NNPDF including the PDF error band for the two cases. (c) Relative impact of
the PDF uncertainties with (magenta line) and without (blue line) the PI contribution. Standard acceptance cuts are applied
(|⌘l| < 2.5 and plT > 20 GeV).

on the central value. The methods are basically two. CTEQ and MRST apply the Hessian method that exploits
PDF eigenvalues [10, 43]. In this approach, the error is estimated from the standard deviation of a limited number
of central values coming from the di↵erence of paired PDF fits (order 20 pair of fits). The other procedure consists
in applying the replicas method and is adopted by the NNPDF collaboration. The error on the PDF central value
is computed as the standard deviation of a large set of replicas (order 100) that represent other possible fits of the
experimental data [29, 31]. For any observable, the central value is defined as the average of the di↵erent replicas and
its error is given by the standard deviation as summarized by the following equations

O0 = hOi = 1

N

NX

k=1

Ok, (III.1)

(�O)2 =
1

N

NX

k=1

(Ok �O0)
2, (III.2)

where Ok (k = 1, ..., N) are the N replicas. Following this approach, we have evaluated the di↵erential cross section
for the hundred NNPDF replicas for both the DY and PI processes. The good quality of the quark (antiquark) fit
translates into a rather satisfactory prediction for the DY dilepton spectrum. This is shown in Fig. 5a where we plot
the dilepton invariant mass distribution for all the replicas. The result of the averaging procedure gives the central
value and the error band visible in Fig. 5b.
At the LHC RunII with 13 TeV, the PDF uncertainty coming from the large-x region is pushed towards higher dilepton
invariant masses, compared to RunI. More in detail, the relative PDF error grows above 10% for Mll � 4 TeV and
goes up sharply to 80% at the LHC potential edge around Mll ' 6 TeV, as shown in Fig.5c. The theoretical error on
the DY process initiated by a quark-antiquark interaction looks reasonably under control over a large portion of the
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cross section versus forward-backward asymmetry studies
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We explore the e↵ects of Photon Induced (PI) production of a dilepton final state in the Large
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the photons as real partons inside the protons and compare their yield directly to that of the Drell-
Yan (DY) process. In particular, we concentrate on an error analysis of the two mechanisms. In
order to do so, we use the NNPDF set, which comes with a set of replicas to estimate the systematic
PDF error. On the one hand, we find that the PI contribution becomes dominant over DY above
a dilepton invariant mass of 3 TeV. On the other hand, the PI predictions are a↵ected by a large
error coming from the QED PDFs, well above the one a↵ecting the DY mode. We assess the
impact of these uncertainties in the context of resonant and non-resonant searches for a neutral
massive vector boson (Z0) through the di↵erential cross section and Forward-Backward Asymmetry
(AFB) observables as a function of the dilepton invariant mass. While the former is subject to the
aforementioned significant residual errors the latter shows the systematic error cancellation expected
(recall that AFB is a ratio of cross sections) even in presence of PI contributions, so that the recently
emphasized key role played by AFB as a valid tool for both Z0 discovery and interpretation in both
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2

e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ � p

s is introduced to ensure the correct dimensions,
where

p
s is the centre-of-mass energy.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
1

4p · k
Z

d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where q = k � k0, Q2 = �q2, W
µ⌫

(p, q) =
�g

µ⌫

F
1

(x,Q2) + p
µ

p
⌫

/(pq)F
2

(x,Q2) + O(q
µ

, q
⌫

) is the
proton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
is the lep-

tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M2 � m2

p

, where m
p

is the proton mass, one
obtains

� =
c
0

2⇡

Z
1

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2+

2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

� 2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/s, Q2

min

= x2m2

p

/(1�z), Q2

max

= M2/(1�
z) and c

0

= 16⇡2/⇤2.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
1

x

dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
�2+3z� z2+

zp
�q

(z)

✓
ln

M2

µ2

+ ln
(1� z)2

z

◆#
e2
q

�
aq

+ . . . , (5)

with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1

x

dz

z

(Z µ2

1�z

Q

2

min

dQ2

Q2

↵2(Q2)

" 
2� 2z + z2 +

2x2m2

p

Q2

!
F
2

(x/z,Q2)

� z2F
L

⇣x
z
,Q2

⌘#
� ↵2(µ2)z2F

2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. The last term in this equa-
tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

=
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

=
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq.(6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
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3

FIG. 1. Our breakup of the x,Q

2 plane and the data for
F2,L(x,Q

2) that we use in each region.

elastic contribution to the � PDF is known for x . 0.9.1

The inelastic components of F
2

and F
L

contribute for
W 2 = m2

p

+ Q2(1 � x)/x > (m
p

+ m
⇡

0)2. One needs
data over a large range of x and Q2. This is available
thanks to a long history of ep scattering studies. We
break the inelastic part of the (x,Q2) plane into three
regions, as illustrated in Fig. 1. In the resonance region,
W 2 . 3.5 GeV2 we use a fit to data by CLAS [34], and
also consider an alternative fit, to the world data, by
Christy and Bosted (CB) [35]. In the low-Q2 continuum
region we use the GD11-P fit by Hermes [36] based on
the ALLM parametric form [37]. Both the GD11-P and
CB resonance fits are constrained by photoproduction
data, i.e. they extend down to Q2 = 0. The CLAS fit
also behaves sensibly there. (Very low Q2 values play
little role because F

2

vanishes as Q2.) These fits are
for F

2

(x,Q2). We also require F
L

, or equivalently R =
�
L

/�
T

, which are related by

F
L

(x,Q2) = F
2

(x,Q2)

 
1 +

4m2

p

x2

Q2

!
R(x,Q2)

1 +R(x,Q2)
,

(8)
for which we use the HERMES parametrization [36].
The leading twist contribution to F

L

is suppressed by
↵
s

(Q2)/(4⇡). At high Q2 we determine F
2

and F
L

from the PDF4LHC15 nnlo 100 [38] merger of global PDF
fits [39–41] together with the known massless NNLO co-
e�cient functions [42], as implemented in Ref. [43].

In Fig. 2 we show the various contributions to our
“LUXqed” photon PDF as a function of x, for a represen-
tative scale choice of µ = 100 GeV. There is a sizeable
elastic contribution, with an important magnetic com-
ponent at large values of x. The white line represents
contributions arising from the Q2 < 1 region of all the

1
Note that the last term in Eq.(6) does not have an elastic con-

tribution for large µ2
because of the rapid drop-o↵ of GE,M .
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FIG. 2. Contributions to the photon PDF at µ = 100 GeV
from the various components discussed in the text. For the
inelastic part, the area below the white line is the contribution
from Q

2  1 (GeV)2 in Eq. 6. The PDF has been multiplied
by 103x0.4

/(1 � x)4.5. The PDF would be the dashed blue
line without the MS conversion factor.

FIG. 3. Linearly stacked relative uncertainties on the photon
PDF, from all sources we have considered, and their total sum
in quadrature shown as a black line.

structure functions, but including the full elastic contri-
bution. For the accuracy we are aiming at, all contri-
butions that we have considered and are shown in Fig. 2
have to be included. Furthermore, inelastic contributions
with Q2 < 1 cannot be neglected.

In Fig. 3 we show the sources contributing to the un-
certainty on our calculation of the photon parton density
at our reference scale µ = 100 GeV. They are stacked
linearly and consist of: a conservative estimate of ±50%
for the uncertainty on R = �

L

/�
T

at scales Q2 < 9 GeV2

(R); standard 68%CL uncertainties on the PDFs, applied
to scales Q2 � 9 GeV2 (PDF); a conservative estimate of
the uncertainty on the elastic form factors, equal to the
estimated size of the two-photon exchange contribution
in [33] (E); an estimate of the uncertainty in the reso-
nance region taken as the di↵erence between the CLAS
and CB fits (RES); a systematic uncertainty due to the
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3

FIG. 1. Our breakup of the (x,Q2) plane and the data for
F2,L(x,Q

2) that we use in each region.

the elastic contribution to the photon PDF is known for
x . 0.9.1

The inelastic components of F
2

and F
L

contribute for
W 2 = m2

p

+ Q2(1 � x)/x > (m
p

+ m
⇡

0)2. One needs
data over a large range of x and Q2. This is available
thanks to a long history of ep scattering studies. We
break the inelastic part of the (x,Q2) plane into three
regions, as illustrated in Fig. 1. In the resonance region,
W 2 . 3.5 GeV2 we use a fit to data by CLAS [34], and
also consider an alternative fit, to the world data, by
Christy and Bosted (CB) [35]. In the low-Q2 continuum
region we use the GD11-P fit by Hermes [36] based on
the ALLM parametric form [37]. Both the GD11-P and
CB resonance fits are constrained by photoproduction
data, i.e. they extend down to Q2 = 0. The CLAS fit
also behaves sensibly there. (Very low Q2 values play
little role because F

2

vanishes as Q2.) These fits are
for F

2

(x,Q2). We also require F
L

, or equivalently R =
�
L

/�
T

, which are related by

F
L

(x,Q2) = F
2

(x,Q2)

 
1 +

4m2

p

x2

Q2

!
R(x,Q2)

1 +R(x,Q2)
,

(8)
for which we use the HERMES parametrization [36].
The leading twist contribution to F

L

is suppressed by
↵
s

(Q2)/(4⇡). At high Q2 we determine F
2

and F
L

from the PDF4LHC15 nnlo 100 [38] merger of global PDF
fits [39–41] together with the known massless NNLO co-
e�cient functions [42], as implemented in Ref. [43].

In Fig. 2 we show the various contributions to our
“LUXqed” photon PDF as a function of x, for a represen-
tative scale choice of µ = 100 GeV. There is a sizeable
elastic contribution, with an important magnetic com-
ponent at large values of x. The white line represents

1
Note that the last term in Eq.(6) does not have an elastic con-

tribution for large µ2
because of the rapid drop-o↵ of GE,M .

FIG. 2. Contributions to the photon PDF at µ = 100 GeV
from the various components discussed in the text. For the
inelastic part, the area below the white line is the contribution
from Q

2  1 (GeV)2 in Eq. 6. The PDF has been multiplied
by 103x0.4

/(1 � x)4.5. The PDF would be the dashed blue
line without the MS conversion term.
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FIG. 3. Linearly stacked relative uncertainties on the photon
PDF, from all sources we have considered, and their total sum
in quadrature shown as a black line.

contributions arising from the Q2 < 1 region of all the
structure functions, but including the full elastic contri-
bution. For the accuracy we are aiming at, all contri-
butions that we have considered and are shown in Fig. 2
have to be included. Furthermore, inelastic contributions
with Q2 < 1 cannot be neglected.

In Fig. 3 we show the sources contributing to the un-
certainty on our calculation of the photon parton density
at our reference scale µ = 100 GeV. They are stacked
linearly and consist of: a conservative estimate of ±50%
for the uncertainty on R = �

L

/�
T

at scales Q2 < 9 GeV2

(R); standard 68%CL uncertainties on the PDFs, applied
to scales Q2 � 9 GeV2 (PDF); a conservative estimate of
the uncertainty on the elastic form factors, equal to the
estimated size of the two-photon exchange contribution
in [33] (E); an estimate of the uncertainty in the reso-
nance region taken as the di↵erence between the CLAS
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