

Gavin Salam, CERN

including work with Aneesh Manohar, Paolo Nason and Giulia Zanderighi

Guido Altarelli Memorial Session

5th International Conference on New Frontiers in Physics, Crete, July 2016

ASYMPTOTIC FREEDOM IN PARTON LANGUAGE

G. ALTARELLI *

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure **, Paris, France

G. PARISI *** Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France

Received 12 April 1977

A novel derivation of the Q^2 dependence of quark and gluon densities (of given helicity) as predicted by quantum chromodynamics is presented. The main body of predictions of the theory for deep-inleastic scattering on either unpolarized or polarized targets is re-obtained by a method which only makes use of the simplest tree diagrams and is entirely phrased in parton language with no reference to the conventional operator formalism.

$$\frac{dq^{i}(x, t)}{dt} = \frac{\alpha(t)}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[\sum_{j=1}^{2f} q^{j}(y, t) P_{q}i_{q}j\left(\frac{x}{y}\right) + G(y, t) P_{q}i_{G}\left(\frac{x}{y}\right) \right],$$

$$\frac{dG(x, t)}{dt} = \frac{\alpha(t)}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[\sum_{j=1}^{2f} q^{j}(y, t) P_{q}i_{q}j\left(\frac{x}{y}\right) + G(y, t) P_{q}i_{G}\left(\frac{x}{y}\right) \right],$$
Quantum mechanics made probabilistic

Х

impact of DGLAP evolution from
$$Q_0 = 2 \text{ GeV}$$

impact of DGLAP evolution from $Q_0 = 2 \text{ GeV}$

impact of DGLAP evolution from $Q_0 = 2 \text{ GeV}$

impact of DGLAP evolution from $Q_0 = 2 \text{ GeV}$

impact of DGLAP evolution from $Q_0 = 2 \text{ GeV}$

impact of DGLAP evolution from $Q_0 = 2 \text{ GeV}$

DGLAP evolution changes parton distributions by factors ~ 10 Higgs cross section (13 TeV) would be 6x smaller without DGLAP

nowadays, used at NNLO, thanks to Moch, Vermaseren & Vogt

X

WHAT ACCURACY DO WE NEED? E.G. FOR LONG-TERM HIGGS PRECISION

Naive extrapolation suggests LHC has long-term potential to do Higgs (and much other) physics at **1% accuracy**

how well do we know the parton distributions?

PDF uncertainties (Q = 100 GeV)

core partons (up, down, gluon) are quite well known PDF uncertainties (Q = 100 GeV)

core partons (up, down, gluon) are quite well known ~2%

strangeness ~10%

PDF uncertainties (Q = 100 GeV)

core partons (up, down, gluon) are quite well known ~2%

strangeness ~10%

one other parton, the photon, is debated. The only model-independent determination (NNPDF23qed) has O(100%) uncertainty

IT MATTERS FOR DI-LEPTON, DI-BOSON, TTBAR, EW HIGGS, ETC.

PHOTON PDF ESTIMATES (not exhaustive)

	elastic	inelastic	in LHAPDF?
Gluck Pisano Reya 2002	dipole	model	×
MRST2004qed	×	model	\checkmark
NNPDF23qed	no separation; fit to data		\checkmark
CT14qed	×	model (data-constrained)	\checkmark
CT14qed_inc	dipole	model (data-constrained)	\checkmark
Martin Ryskin 2014	dipole (only electric part)	model	×
Harland-Lang, Khoze Ryskin 2016	dipole	model	×
elastic: Budnev, Ginzburg, Meledin, Serbo, 1975			

YOU SHOULDN'T NEED A MODEL ep scattering (i.e. structure functions) contains all info about proton's EM field

to extract it, we'll study a hypothetical ("BSM") heavy-neutral lepton production process Manohar, Nason, GPS & Zanderighi, to appear

STEP 1

work out a cross section (exact) in terms of F2 and FL struct. fns.

 $\sigma = \frac{1}{4p \cdot k} \int \frac{d^4q}{(2\pi)^4 q^4} e_{\rm ph}^2(q^2) \left[4\pi W_{\mu\nu} L^{\mu\nu}(k,q)\right] \times 2\pi \delta((k-q)^2 - M^2)$

STEP 2

work out same cross section in terms of a photon distribution

$$\sigma = c_0 \sum_{a} \int \frac{dx}{x} \,\hat{\sigma}_a \left(\frac{M^2}{xs}, \mu^2\right) \, x f_{a/p} \left(x, \mu^2\right)$$

29

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$xf_{\gamma/p}(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_{Q_{\min}^2}^{Q_{\max}^2} \frac{dQ^2}{Q^2} \alpha^2(Q^2) \\ \left[\left(2 - 2z + z^2 + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z,Q^2) \\ - z^2 F_L\left(\frac{x}{z},Q^2\right) \right] - \alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z},\mu^2\right) \right\},$$

Result is in MSbar scheme & consistent with 2015 de Florian, Rodrigo, Sborlini $O(\alpha \alpha_s) P_{\gamma x}$ QED split.fns.

PHOTON PDF ESTIMATES (not exhaustive)

	elastic	inelastic	in LHAPDF?
Gluck Pisano Reya 2002	dipole	model	×
MRST2004qed	×	model	\checkmark
NNPDF23qed	no separation; fit to data		\checkmark
CT14qed	×	model (data-constrained)	\checkmark
CT14qed_inc	dipole	model (data-constrained)	\checkmark
Martin Ryskin 2014	dipole (only electric part)	model	×
Harland-Lang, Khoze Ryskin 2016	dipole	model	×
LUXqed 2016	data	data	soon

DATA SOURCES — various fits to F2, FL & elastic form factors

the results

ratio of some widely used PDFs to LUXqed (red)

PHOTON UNCERTAINTY (1-2%) COMPARED TO OTHER FLAVOURS

PDF uncertainties (Q = 100 GeV)

YY luminosity

$pp \rightarrow H W^+ (\rightarrow l^+v) + X \text{ at } 13 \text{ TeV}$			
non-photon induced contributions	91.2 ± 1.8 fb		
photon-induced contribs (NNPDF23)	6.0 +4.4 _{-2.9} fb		
photon-induced contribs (LUXqed)	4.4 ± 0.1 fb		

non-photon numbers from LHCHXSWG

- LHC physics would be unrecognisable without Guido's contributions, first and foremost the simple physical picture contained in the DGLAP equations.
- Parton distribution functions are among the crucial inputs to LHC physics, with significant open problems still to solve today.
- More generally, Guido's dedication, his combination of breadth and attention to detail, all serve as a model for what a physicist may aspire to.

extra slides

1606.06646v1

Elena Accomando,^{1,2,*} Juri Fiaschi,^{1,2,†} Francesco Hautmann,^{2,3,‡} Stefano Moretti,^{1,2,§} and C.H. Shepherd-Themistocleous^{1,2,¶}

SEPARATE CONTRIBUTIONS TO PHOTON PDF

BREAKDOWN OF UNCERTAINTIES

YY luminosity

