LHC THEORY — TOWARDS 1% PRECISION? Gavin P. Salam, CERN

Joint CTEQ Meeting and 7th International Conference on Physics Opportunities at an EIC (POETIC 7)

Talk in part inspired by discussions at KITP Santa Barbara& for ECFA HL-LHC workshop

The LHC and its Experiments

 ~16.5 mi circumference, ~300 feet underground • 1232 superconducting twin-bore Dipoles (49 ft, 35 t each) • Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9K • Beam intensity 0.5 A (2.2 10⁻⁶ loss causes quench), 362 MJ stored energy

ATLAS: general purpose

ALICE: heavy-ion physics

CMS: general purpose

LHCb: B-physics

+ TOTEM, LHCf

LHC – TWO ROLES – A DISCOVERY MACHINE **AND A PRECISION MACHINE**

Increase in luminosity brings discovery reach and precision

KEY UNRESOLVED PROBLEMS

- ► nature of dark matter
- nature of dark energy
- origin of matter-antimatter asymmetry

The field has made enormous progress in excluding regions of parameter space for new physics models that resolve some of these problems.

But we need new clues.

A PLACE TO LOOK: THE HIGGS-BOSON SECTOR

- The theory is old (1960s-70s).
- But the particle and it's theory are unlike anything we've seen in nature.
- > A fundamental scalar φ , i.e. spin 0 (all other particles are spin 1 or 1/2)
- ► A potential V(ϕ) ~ - $\mu^2(\phi \phi^{\dagger})$ + $\lambda(\phi \phi^{\dagger})^2$, which until now was limited to being theorists' "toy model" (ϕ^4)
- "Yukawa" interactions responsible for fermion masses, $y_i \phi \psi \psi$, with couplings (y_i) spanning 5 orders of magnitude

Is Higgs fundamental or composite? Are Yukawa couplings responsible

HOW DO WE STRESS-TEST THE HIGGS SECTOR?

By looking for deviations from Higgs-sector standard-model (SM) predictions

$$g = g_{\rm SM} \left[1 + \Delta \right] : \Delta = \mathcal{O}(v^2 / \Lambda^2)$$

Sensitivity to small deviations $\Delta \leftrightarrow$ probe large scales Λ where theory is not SM-like. Higher precision \rightarrow sensitivity to higher scales.

There could also be LARGE deviations in rare processes, e.g. those with couplings to second generation, or double Higgs production.

controlled by third derivative of Higgs potential at its minimum

What precision should LHC have as a target?

my personal point of view, not official LHC statements

NAIVELY EXTRAPOLATE 7+8 TEV HIGGS RESULTS (based on lumi and σ)

extrapolated precision [%]

Extrapolation suggests that we get "precision" value from full lumi only if we aim for O(1%) or better precision

p_⊤ [GeV]

systematics.

p∥ ⊤	[(3	e	V	/
T	I	I	1	I	Т
					-
					-
					-
					-
					-
					_
					_
					=
					_
					_
					-
					-
					-
					-
		-)—		
					ī
	•			•	
		-1			
		ľ			_
		-			
					_
					_
+		+	+	+	ł
					_
				_	
					-
p≞	[(3	е	V	/
-					

OVERALL, 1% SEEMS AN INTERESTING FIGURE TO HAVE IN MIND

What do we need to get there?

Theory:

- > perturbative calculations
- understanding of non-perturbative effects

Inputs

- ► the strong coupling
- > parton distribution functions (PDFs)

Perturbative calculations

(almost) all theory predictions for LHC are based on perturbation theory, e.g.

 $\sigma = a_s \sigma_1 + a_s^2 \sigma_2 + \dots$

PRECISION LHC PHYSICS RELIES ON PRECISION THEORY

Progress on calculations has been stunning in the past years

- ► N3LO Higgs
- ► Many processes at NNLO
- ► NLO + parton-shower automation
- First NNLO + parton-shower
- NNLL Resumations
- \succ EW + QCD, etc.

gives a few % precision for Higgs cross section

NNLO (relative α_s^2) is becoming today's state of the art

WHAT PRECISION AT NNLO?

For many processes NNLO scale band is $\sim \pm 2\%$ Though only in 3/17 cases is NNLO (central) within NLO scale band...

• • • •

The strong quark coupling: CKs

(almost) all theory predictions for LHC are based on perturbation theory, e.g.

 $\sigma = a_s \sigma_1 + a_s^2 \sigma_2 + \dots$

PDG World Average: $\alpha_s(M_Z) = 0.1181 \pm 0.0011 (0.9\%)$

Bethke, Dissertori & GPS in PDG '16

PDG World Average: $\alpha_s(M_Z) = 0.1181 \pm 0.0011 (0.9\%)$

- 1004.4285, 1408.4169)
- suggest
- $a_s(M_Z) = 0.1184 \pm 0.0012(1\%)$
- Worries include missing perturbative effects in 3–4 [addressed in some work], etc.

Most consistent set of independent determinations is from lattice

➤ Two best determinations are from same group (HPQCD,

 $a_s(M_Z) = 0.1183 \pm 0.0007$ (0.6%) [heavy-quark correlators] $a_s(M_Z) = 0.1183 \pm 0.0007 (0.6\%)$ [Wilson loops]

Error criticised by FLAG, who

perturbative contributions, nonflavour transition at charm mass

E+E-EVENT SHAPES AND JET RATES

► Two "best" determinations are from same group (Hoang et al, 1006.3080,1501.04111) $a_s(M_Z) = 0.1135 \pm 0.0010 (0.9\%)$ [thrust] $a_s(M_Z) = 0.1123 \pm 0.0015 (1.3\%)$ [C-parameter]

thrust & C-parameter are highly correlated observables

vent-shapes subject to large non-perturbative effects, and precision relies on accurate understanding of them (no consensus in the field that that's been reached)

> some groups also find small $a_s(M_Z)$ from DIS (but many argue this is an artefact of the fit procedure)

WHAT WAY FORWARD FOR α_s ?

- \blacktriangleright We need to settle question of whether "small" (0.113) a_s is possible. LHC data already weighing in on this (top data), further info in near future (Z p_T?)?
- ➤ To go beyond 1%, best hope is probably lattice QCD — on a 10year timescale, there will likely be enough progress that multiple groups will have high-precision determinations

NB: top-quark mass choice affects this plot

PARTON DISTRIBUTION FUNCTIONS (PDFS)

how many quarks and gluons are there carrying a fraction x of the proton's momentum?

 $\sigma \propto f_{q/p}(x_1,\mu^2) f_{q/p}(x_2,\mu^2)$

UNCERTAINTIES ON PARTONIC LUMINOSITIES — V. RAPIDITY(Y) AND MASS

gluon-gluon luminosity uncertainty

WHAT ROUTE FOR PROGRESS?

- Current status is 2–3% for core "precision" region
- Path to 1% is not clear e.g. Z p_T's strongest constraint is on qg lumi, which is already best known (why?)
- It'll be interesting to revisit the question once ttbar, incl. jets, Z p_T, etc. have all been incorporated at NNLO
- Can expts. get better lumi determination?
- [is it time for PDFs to include theory uncertainties?]

quark-gluon luminosity uncertainty

There are, however, issues. Notably in Z production

unpolarized PDF opportunities at EIC?

especially at high Q^2 , large-x cf. also the talks by Nocera, Klein

EIC & high-x parton distributions

- today's high-x partons largely constrained from low-Q² data, where higher-twist effects may be a concern
- Idown/strange/gluon poorly known at large x, and LHC prospects for improvement not clear
- \blacktriangleright could high-statistics large-x large-Q² data from EIC bring significant improvement?
 - by rigorously eliminating higher-twist effects
 - ► by comparing high-precision electron-proton with electron-deuteron data
 - Charged-current (especially positron) data

Detailed projections of EIC potential for PDF improvements v. LHC physics programme would be valuable.

PDF4LHC15_nnlo_100	uncertainty at x Q = 100 GeV
up	2.4%
down	12%
strange	140%
gluon	34%

COMMENTS / CONCLUSIONS

- > A big part of LHC's physics programme (Higgs, top, dilepton, ...) will involve precision physics
- \succ 1% is a target to keep in mind, at the edge of what is realistic today (recall: LHC has another 20 years to go)
- Some problems remain to be solved:
 - consensus on PDFs (& path to 1%), strong coupling
 - non-perturbative effects
- Can EIC bring constraints on PDFs beyond what we have already from HERA? Perhaps at large-x? It would be good to have a clearer answer on this.

> Perturbative calculations are making huge progress (though much still to be done)

BACKUP

Requirements: \sqrt{s} and **Polarization**

* Need to reach low-x where gluons dominate (ΔG , $\Delta \Sigma$ range!) * Flexible energies (see also structure functions later) * Need sufficient lever arm in Q^2 at **fixed** x (evolution along Q^2 or x) * Electrons and protons/light nuclei (p, ³He, d) highly polarized (70%) From Berndt Mueller's talk

From Rik Yoshida's talk

EXPERIMENTAL PERSPECTIVES

Generation of pseudo-data: the Z pt

Generate pseudo-data for the transverse momentum distribution of Z bosons decaying into leptons Statistical uncertainties determined from **number of events per bin**, after a binning optimisation Added a **2% systematic uncertainty** to the statistical uncertainty

Ş

ğ

Generation of pseudo-data: high-mass Drell-Yan

Generate pseudo-data for the invariant mass distribution of di-electrons and di-muons

Statistical uncertainties determined from **number of events per bin**, after a binning optimisation

Added a **2% systematic uncertainty** to the statistical uncertainty

Ş

Ş

Ş

Generation of pseudo-data: top quark pair

Generate pseudo-data for the **invariant mass distribution** in the **leptonic final state** Statistical uncertainties determined from number of events per bin, after a binning optimisation Added a **3% systematic uncertainty** to the statistical uncertainty

Juan Rojo

Z PT: the "ideal" hard process?

For both data and theory, $Z p_T$ is an immediate testing ground for 1% effects. (& unlike Z & W prodⁿ it's sensitive to α_s)

Z p_T: uncertainties somewhat smaller for ATLAS than CMS

REMARKS

- \blacktriangleright Looks like scale uncertainties are $\pm 1-2\%$ (but how well does series converge?)
- ► In key 50–100 GeV region, data seem ~4% higher than NNLO theory
- This could have important implications for a_s and PDFs (smaller a_s will not help!)
- What about non-perturbative effects?

Non-perturbative effects in Z p_T

- ► Inclusive Z cross section should have $\sim \Lambda^2/M^2$ corrections (~10⁻⁴?)
- Z p_T is not inclusive so corrections can be $\sim \Lambda/M$.
- It seems size of effect can't be probed by turning MC hadronisation on/off [maybe by modifying underlying MC parameters?]

Non-perturbative effects in Z p_T

.

Non-perturbative effects in Z p_T

integral over low Pe emissions is non-perturbative

Non-perturbative effects in Z p_T

(model non-perturbative effect by shifting Z pr by e.g. 0.5 GeV

Non-perturbative effects in Z p_T

- ► Inclusive Z cross section should have $\sim \Lambda^2/M^2$ corrections (~10⁻⁴?)
- Z p_T is not inclusive so corrections can be $\sim \Lambda/M$.
- Size of effect can't be probed by turning MC hadronisation on/off [maybe by modifying underlying MC] parameters?]
- Shifting Z p_T by a finite amount illustrates what could happen

A conceptually similar problem is present for the W momentum in top decays

Multi-Parton Interactions?

Naively, you'd expect these are not correlated with Z p_T — but in at least one MC (Pythia 6) switching them on/ off changes distribution by O(1%)

(with MPI) / (without MPI)

THE JET IN Z+JET @ NNLO

1-jet cross sections					
	$\sigma_{ m LO}~(m pb)$	$\sigma_{\rm NLO}~({\rm pb})$	$\sigma_{\rm NNLO} ~({\rm pb})$	$K_{\rm NLO}$	$K_{\rm NNLO}$
8 TeV	$4.17_{-0.47}^{+0.55}$	$6.59\substack{+0.62 \\ -0.53}$	$6.86^{+0.01}_{-0.13}$	1.58	1.04
$13 { m TeV}$	$9.12^{+0.88}_{-0.79}$	$14.90^{+1.29}_{-1.06}$	$15.54\substack{+0.01 \\ -0.24}$	1.63	1.04

- ► NNLO K-factor is a few%
- ► Residual scale uncertainty <2%

Gehrmann-De Ridder et al, 1607.01749

Hadronisation: Jet v. Z in Z+jet process

hadron / parton

2 -

2 – 5% effects for jets

POWERFUL HANDLE: EXPLORE A RANGE OF JET RADI

3 effects:

- > perturbative ($\sim \ln R$)
- ► hadronisation (~ 1/R)
- > MPI/UE ($\sim R^2$)
- To disentangle them, need $\geq 3 \text{ R}$ values:
- ► 0.6–0.7: large MPI/UE
- ► 0.4: non-pert. effects cancel?
- ► 0.2–0.3: large hadronisation

ratio of inclusive jet spectra at R=0.4 and 0.6

NNLO_R & small-R resummation

to explore full R-range, need resummation as well

 $\sigma(R) = \sigma(R_0 = 1) \times \operatorname{ratio}(R, R_0)_{\text{fixed-order} + \operatorname{LL}_R}$

At R=0.4, NNLO corrections are 15% (up to 30% for R=0.2, where resummation also needed) If we're to reach 1% accuracy for jet processes, NNLO may not be enough

VH prodution at large m(VH)

In presence of a higher-dim op such as:

Slide from Michelangelo

See e.g. Biekötter, Knochel, Krämer, Liu, Riva, arXiv:1406.7320

WH at large Q^2 with dim-6 BSM effect

p_{tH} [GeV] cf also Wulzer et al, arXiv:1609.08157

SM)/SM

(data

WH at large Q² with dim-6 BSM effect

new physics isn't just a single number that's wrong (think g-2)

but rather a distinct scaling pattern of deviation ($\sim p_T^2$)

moderate and high p_T's have similar statistical significance — so it's useful to understand whole p_T range

Precision buys us kinematic reach to establish scaling pattern of any deviation

CMS Z p_T uncertainties (normalised to total fiducial)

Figure 1: Relative uncertainties in percent of the normalised fiducial cross section measurement. Each plot shows the q_T dependence in the indicated ranges of |y|.

Uncertainties seem significantly larger for CMS.

Where are the differences wrt ATLAS?

1504.03511

Figure 4: Uncertainty from various sources on $(1/\sigma) d\sigma/d\phi_{\eta}^*$ (top) and $(1/\sigma) d\sigma/dp_{T}^{\ell\ell}$ (bottom) for events with 66 GeV < $m_{\ell\ell}$ < 116 GeV and $|y_{\ell\ell}|$ < 2.4. Left: electron-pair channel at dressed level. Right: muon-pair channel at bare level.

Uncertainties seem significantly larger for CMS.

Where are the differences wrt ATLAS?

1512.02912

WHAT ROUTE FOR PROGRESS?

- \blacktriangleright Current status is 2–3% for core "precision" region
- > Path to 1% is not clear e.g. $Z p_T$'s strongest constraint is on qg lumi, which is already best known (why?)
- ► It'll be interesting to revisit the question once ttbar, incl. jets, Z p_T, etc. have all been incorporated at NNLO
- ► Can expts. get better lumi determination?
- ► [is it time for PDFs to include theory uncertainties?]

Theory Uncertainties

quark-gluon luminosity: INNLO-NLOI/(2NNLO)

VECTOR-BOSON FUSION \rightarrow **HIGGS**

double DIS approximation is powerful tool for VBF, using structure functions for the W/Z production (Han, Valencia & Willenbrock 1992, NNLO by Bolzoni et al 1003.4451)

- ► Now extended to N3LO, shows scale uncertainties $\ll 1\%$ for observables inclusive wrt the jets
- good stability from NNLO to N3LO

N3LO

VECTOR-BOSON FUSION \rightarrow **HIGGS**

 double DIS approximation is powerful tool for VBF, using structure functions for the W/Z production (Han, Valencia & Willenbrock 1992, NNLO by Bolzoni et al 1003.4451)

- Now extended to N3LO, shows scale uncertainties « 1% for observables inclusive wrt the jets
- good stability from NNLO to N3LO

N3LO VBF (no cuts)

Exact in "QCD₁ \otimes QCD₂" Non-trivial real-world corrections believed < 1%

VBF with cuts on jets: Projection to Born method

(a) Born VBF process

using VBF 3-jet @ NLO from Jäger, Schissler & Zeppenfeld, 1405.6950

Cacciari, Dreyer, Karlberg, GPS & Zanderighi, 1506.02660 Exact in " $QCD_1 \otimes QCD_2$ "

Inclusive part only (with VBF cuts)

NNLO is 1% effect

Full calculation (with VBF cuts)

NNLO is up to 8% effect

Almost all of which comes from jet fragmentation

2 KINDS OF EFFECT IN SUCH PROCESSES ?

- "Inclusive" correction to process as a whole (insofar as this is meaningful)
- corrections related to jet fragmentation

Can we make such a distinction meaningful?

Can we examine same idea in other contexts? E.g. inclusive jet spectrum

- > There is no way of defining the "inclusive" part in most cases
- > But there are arguments that for a jet radius $R_m \approx 1$, ISR and FSR effects mostly cancel each other [Soyez, 1006.3634]
- > So try looking at effect of NNLO corrections relative to $R_m = 1$ [can be done with NLO 3-jet calcⁿ from NLOJET++]

$$\sigma^{\mathrm{NNLO}_R}(R, R_m) \equiv \sigma_0 +$$

Dasgupta, Dreyer, GPS & Soyez, 1602.01110

 $\sigma_1(R) + [\sigma_2(R) - \sigma_2(R_m)]$

R-dependent piece of NLO NNLO, relative to R_m

► Full NNLO will have an additional NNLO term associated with the effective K-factor for the "inclusive" piece — we miss that part (and unlike VBF, it may not be small)

HIGGS JET VETO @ N3LO + NNLL

Anastasiou, Duhr, Dulat, Herzog & Mistlberger 1503.06056 Boughezal, Caola, Melnikov, Petriello & Schulze 1504.07922 Banfi, Caola, Dreyer, Monni, GPS, Zanderighi & Dulat 1511.02886

- ► N3LO effects at 2–4%
- Residual uncertainty up to 4% (fairly conservative estimate)

HIGGS JET VETO @ N3LO + NNLL

Anastasiou, Duhr, Dulat, Herzog & Mistlberger 1503.06056 Boughezal, Caola, Melnikov, Petriello & Schulze 1504.07922 Banfi, Caola, Dreyer, Monni, GPS, Zanderighi & Dulat 1511.02886

- ► N3LO effects at 2–4%
- Residual uncertainty up to 4% (fairly conservative)
- rather stable (~2%) wrt jet-p_T resummation effects

how good is resummation at finite p_t?

thanks to P. Monni for producing this plot

50

N3LO-NNLL@N3LO N3L0

- \blacktriangleright Resummation is designed for $p_t \ll m_H$,
- At what point does it actually become relevant?
- From figure, for $p_t/m_H \sim 0.4$ it already captures 70% of fixed order

THE JET IN Z+JET @ NNLO

1-jet cross sections					
	$\sigma_{ m LO}~(m pb)$	$\sigma_{\rm NLO}~({\rm pb})$	$\sigma_{\rm NNLO} \ ({\rm pb})$	$K_{\rm NLO}$	$K_{\rm NNLO}$
8 TeV	$4.17\substack{+0.55 \\ -0.47}$	$6.59_{-0.53}^{+0.62}$	$6.86^{+0.01}_{-0.13}$	1.58	1.04
$13 { m TeV}$	$9.12^{+0.88}_{-0.79}$	$14.90^{+1.29}_{-1.06}$	$15.54\substack{+0.01 \\ -0.24}$	1.63	1.04

- ► NNLO K-factor is 4%
- ► Residual scale uncertainty <2%

HIGGS JET VETO @ N3LO + NNLL

Anastasiou, Duhr, Dulat, Herzog & Mistlberger 1503.06056 Boughezal, Caola, Melnikov, Petriello & Schulze 1504.07922 Banfi, Caola, Dreyer, Monni, GPS, Zanderighi & Dulat 1511.02886

- ► N3LO effects at 2–4%
- Residual uncertainty up to 4% (fairly conservative estimate)

HIGGS JET VETO @ N3LO + NNLL

Anastasiou, Duhr, Dulat, Herzog & Mistlberger 1503.06056 Boughezal, Caola, Melnikov, Petriello & Schulze 1504.07922 Banfi, Caola, Dreyer, Monni, GPS, Zanderighi & Dulat 1511.02886

- ► N3LO effects at 2–4%
- Residual uncertainty up to 4% (fairly conservative)
- rather stable (~2%) wrt jet-p_T resummation effects

$\textbf{NNLO}_{R} \ \textbf{\& small-R resummation}$

to explore full R-range, need resummation as well

 $\sigma(R) = \sigma(R_0 = 1) \times \operatorname{ratio}(R, R_0)_{\text{fixed-order} + \operatorname{LL}_R}$

$\textbf{NNLO}_{R} \ \textbf{\& small-R resummation}$

to explore full R-range, need resummation as well

 $\sigma(R) = \sigma(R_0 = 1) \times \operatorname{ratio}(R, R_0)_{\text{fixed-order} + \operatorname{LL}_R}$

NLL SMALL-R TERMS

R

subleading terms

R

