Perspectives on SM, Higgs and beyond at LHC *Gavin P. Salam (CERN)*

Bettmergrat, Wallis, Switerland

Theoretical Physics Colloquium University of Oxford 17 February 2017

A typical introduction to a particle physics colloquium often starts with "big unanswered questions"

- Nature of dark matter (& dark energy) Fine-tuning (e.g. supersymmetry and similar) Flavour-asymmetry of the universe
 - • •

and less about the standard model (SM)...

since experiments have already found all its particles...

Looking beyond the SM: searches for dark matter at LHC & elsewhere

Classic dark-matter candidate: a weaklyinteracting massive particle (WIMP, e.g. from supersymmetry).

Masses ~ GeV upwards

(search interpretations) strongly model dependent)

Searching for answers to the "big unanswered questions" is vitally important, (even if there's no way of knowing if it will pay off)

But we also shouldn't forget the importance of **"big answerable questions"** and the issue of how we go about answering them

The LHC and its Experiments

 ~16.5 mi circumference, ~300 feet underground • 1232 superconducting twin-bore Dipoles (49 ft, 35 t each) • Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9K Beam intensity 0.5 A (2.2 10⁻⁶ loss causes quench), 362 MJ stored energy

ALICE: heavy-ion physics

CMS: general purpose

LHCb: B-physics

+ TOTEM, LHCf

perspective in context of LHC

Today > 20 fb⁻¹ @ 8 TeV > 13 fb⁻¹ @ 13 TeV (analysed)

Future 2018: 100 fb⁻¹ @ 13 TeV **2023:** 300 fb⁻¹ @ 1? TeV **2035:** 3000 fb⁻¹ @ 14 TeV

 $1 \, \text{fb}^{-1} = 10^{14} \, \text{collisions}$

Current analyses based on < 1% of the ultimate dataset

Z = - FALFALFAL + iFDY + X: Jij X; \$+h.c. + D g (-V(d))

STANDARD MODEL — KNOWABLE UNKNOWNS

This is what you get when you buy one of those famous CERN T-shirts

L= -= FALFAN + iFDY + X: Jij X; \$+h.c. + D g (-V(d))

This equation neatly sums up our current understanding of fundamental particles and forces.

STANDARD MODEL — KNOWABLE UNKNOWNS

This is what you get when you buy one of those famous CERN T-shirts

"understanding" = knowledge ? "understanding" = assumption ?

Z = - FALFALFAL + iFDY $t \chi_{i} y_{ij} \chi_{j} \phi + h.c.$ $+ \left| \mathcal{D} \varphi \right|^{\prime} - \mathcal{V} (\mathcal{O})$

e.g. $\psi D\psi \rightarrow \psi A_{\mu}\psi \rightarrow$ fermion-fermion-gauge vertex i.e. terms of \mathcal{L} map to particle interactions

NOTATION

 A_{μ} : gauge field ψ : fermion field ϕ : Higgs field $= \phi_0(\text{VEV}) + H(\text{Higgs})$

 $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ etc. $F_{\mu\nu} \sim [D_{\mu}, D_{\nu}]$

ナ チ: りょチ +

GAUGE-MATTER PART

e.g. qqγ, qqZ, qqg, evW interactions — well established in ep, e⁺e[−], pp collisions, etc. **≡ KNOWLEDGE**

(also being studied at LHC — e.g. jets, DY/Z/W, V+jets, ttbar, etc.)

ナ Y: Yii Y, Ø $+ |\mathcal{D}g(-V(\mathcal{O}))$

GAUGE-MATTER PART

e.g. qqy, qqZ, qqg, evW interactions — well established in ep, e⁺e⁻, pp collisions, etc. \equiv KNOWLEDGE

(also being studied at LHC — e.g. jets, DY/Z/W, V+jets, ttbar, etc.)

Do we "know" everything about this part? E.g. direct emission of photon from top quarks is, today, at edge of observability. But it's so much like any other gauge-matter interaction that we almost take it for granted

1 FMV + iT t X: Jij X; \$ +h.c. $+ \left| \mathcal{D}_{\mathcal{M}} \right|^{2} - V(\mathcal{O})$

PURE GAUGE

e.g. ZWW, 3-gluon interactions — well established at LEP (e.g. $e^+e^- \rightarrow W^+W^-$) \equiv KNOWLEDGE

& also being studied at LHC

+ iT. t X: Jij X, Ø + h.c. + Dg(-V(d))

PURE GAUGE

e.g. ZWW, 3-gluon interactions — well established at LEP (e.g. $e^+e^- \rightarrow W^+W^-$) \equiv KNOWLEDGE

& also being studied at LHC

We've seen gauge sectors work over and over again \rightarrow gives us the illusion that the SM is established

+ iZ t X: Jij X + Dø<

HIGGS BOSON

LEP precision made it compelling, LHC discovered it **≡ KNOWLEDGE**

it behaves in every way like a scalar **■ KNOWLEDGE**

is it fundamental/pointlike?
to find out need
~ high-p_T/offshell Higgses
→ data barely sensitive...

+ X: Jii X

HIGGS BOSON

LEP precision made it compelling, LHC discovered it \equiv KNOWLEDGE

it behaves in every way like a scalar \equiv KNOWLEDGE

> is it fundamental/pointlike? to find out need ~ high-p_T/offshell Higgses → data barely sensitive...

Novelty? If fundamental, very (the only fundamental scalar we know of)

GAUGE-HIGGS INTERACTIONS

Definitely non-zero. $H \rightarrow ZZ, H \rightarrow WW, VBF$ (would require "conspiracy" of couplings in order to be substantially different) \equiv **PROBABLY TRUE**

GAUGE-HIGGS INTERACTIONS

Definitely non-zero. $H \rightarrow ZZ, H \rightarrow WW, VBF$ (would require "conspiracy" of couplings in order to be substantially different) **= PROBABLY TRUE**

YUKAWA COUPLINGS

top? gg \rightarrow H, H \rightarrow $\gamma\gamma \equiv$ INDIRECT **bottom?** H branching ratios = INDIRECT tau? ~ observed \equiv ~ KNOWLEDGE 1st & 2nd gen? \equiv IGNORANCE

YUKAWA COUPLINGS

top? gg \rightarrow H, H \rightarrow $\gamma\gamma \equiv$ INDIRECT **bottom?** H branching ratios = INDIRECT tau? ~ observed \equiv ~ KNOWLEDGE

1st & 2nd gen? \equiv IGNORANCE

Novelty? We've never seen anything like it \rightarrow mystery of 5 orders of magnitude in mass between electron & top, CKM

+ i FDY $+ \chi_{i} y_{ij} \chi_{j} \phi_{+}$ + Dør

HIGGS POTENTIAL

15

Vacuum Expectation Value (VEV)? **■ KNOWLEDGE**

2nd derivative (~m_H)? [not a prediction of the theory & any realistic theory must have a minimum & 2nd derivative] ≡ KNOWLEDGE

 $\varphi^2 + \varphi^4$? = **ASSUMPTION**

- the + i FDY + X: Jij X, Ø + Dgg

HIGGS POTENTIAL

Vacuum Expectation Value (VEV)? ≡ KNOWLEDGE

2nd derivative (~m_H)? [not a prediction of the theory & any realistic theory must have a minimum & 2nd derivative] ≡ KNOWLEDGE

 $\varphi^2 + \varphi^4$? = **ASSUMPTION**

Novelty? Theorists' toy model, never seen in nature (as fundamental); Connects with stability of universe

4

OVERALL TODAY

ASSUMPTION

KNOWLEDGE

There remains a lot to establish in the Higgs sector

mu

OVERALL TODAY

ASSUMPTION

KNOWLEDGE

There remains a lot to establish in the Higgs sector

mu 4

BY END OF THE LHC PROGRAMME (~2035)?

ASSUMPTION

KNOWLEDGE

2

mu 4

BY END OF THE LHC PROGRAMME (~2035)?

ASSUMPTION

KNOWLEDGE

or falsification

2

 \Longrightarrow

proton

What do ATLAS & CMS use to make sense of this?

In very large part: theoretical work

In very large part: theoretical work

projection to jets gives simplified view of the essence of an event

Most of the rest: predicting what happens in hadron collisions

Key question today: precision of predictions. Here's an example why

quark mass affects momentum distribution of Higgs

- full distribution affected by relative contributions of top, bottom and charm
- → sensitivity to Hcc Yukawa coupling

Bishara, Haisch, Monni & Re, arXiv:1606.09253 (cf. also Soreq, Zhu, Zupan, arXiv:1606.09621)

Key question today: precision of predictions. Here's an example why

loop can have top, bottom charm (etc.) quarks

- quark mass affects moment of Higgs
- ► full distrib contril

Bis

(cf. a

л, Monni & Re, arXiv:1606.09253 *soreq*, *Zhu*, *Zupan*, *arXiv*:1606.09621)

Protons are composite objects (uud + gluons + ...)

Quantitative LHC physics requires knowledge of PDFs:

$$f_{i/p}(x,\mu^2)$$

- > number of partons of flavour i [=u, d, g, ...]
- inside a fast-moving proton p
- \blacktriangleright carrying a fraction x of the proton's momentum

> when viewed with resolution momentum scale μ [~ 1/wavelength of probe]

LHC physics needs PDFs in region $\sim 10^{-3} - 0.5$

Typically known with good precision ~1–3%

E.g. NNPDF, MMHT, CT & PDF4LHC working group (+ also HERAPDF, ABM, ...)

DF4LHC15

LHC physics needs PDFs in r $\sim 10^{-3} - 0.$

Typically known w precision ~1-

E.g. NNPDF, MMHT, CT & PDF4

PDF4LHC15 for

One exception:

the photon distribution inside the proton (had up to 100% uncertainty)

 $f_{i/p}(x,\mu^2)$

PDF4LHC15 for u_V & NNPDF:

-23 for y

the photon distribution inside the proton

or "how much light accompanies a fast-moving proton?"

based on Manohar, Nason, GPS & Zanderighi PRL '16 (Editors' Suggestion) + work in progress

photon induced contribution to HW production

$pp \rightarrow HW^+ (\rightarrow l^+v) + X \text{ at } 13 \text{ TeV}$

non-photon induced contributions

photon-induced contribs (NNPDF23)

non-photon numbers from LHCHXSWG (YR4) including PDF uncertainties

it matters in new-physics searches

it matters in new-physics searches

it matters in new-physics searches

 $300(ia) \neq m \neq 500(ia)$

modeC-Tildependent y PDPfit (C. 2013)ty **ABM12 Total uncertainty** NNPDF3.0 w/o luminosity uncer. ata $116 \text{ GeV} < m_{\parallel} < 150 \text{ GeV}$ 1.1 -heor 0.9 $150 \text{ GeV} < m_{\parallel} < 200 \text{ GeV}$ 1.1 $|\Delta\eta_{_{II}}|$ 0.9 $200 \text{ GeV} < m_{\parallel} < 300 \text{ GeV}$

 \sim 1300 (ie) \sim m \sim 500 (ie)

is there another way of doing this?

photon distribution from fast-moving charged particle

Point-like particle, e.g. electrons

Fermi, Z. Phys. 1924 ; von Weizsäcker, Z. Phys 1924; Williams, Phys.Rev. 1934

$$f_{\gamma/e}(x,\mu^2) = \frac{\alpha}{2\pi} \left[\frac{1 + (1-x)^2}{x} \log\left(\frac{1-x}{x^2}\frac{\mu^2}{m_e^2}\right) - 2\frac{1-x-x^2\frac{m_e^2}{\mu^2}}{x} \right]$$

photon distribution from fast-moving charged particle

Point-like particle, e.g. electrons

$$f_{\gamma/e}(x,\mu^2) = \frac{\alpha}{2\pi} \left[\frac{1 + (1-x)^2}{x} \log\left(\frac{1-x}{x^2}\frac{\mu^2}{m_e^2}\right) - 2\frac{1-x-x^2\frac{m_e^2}{\mu^2}}{x} \right]$$

- But protons are not point-like...
- Budnev, Ginzburg, Meledin & Serbo, Phys.Rept. 1974 \rightarrow an answer for the case where the proton remains intact after photon emission

given in terms of "proton form factors" (measurable from elastic ep scattering)

Fermi, Z. Phys. 1924 ; von Weizsäcker, Z. Phys 1924; Williams, Phys.Rev. 1934

"number of photons" inside a proton?

Proton constantly fluctuates in & out of different Fock states, some of which have a photon.

"number of photons" inside a proton?

Proton constantly fluctuates in & out of different Fock states, some of which have a photon.

If you absorb the γ , proton breaks up.

"number of photons" inside a proton?

Proton constantly fluctuates in & out of different Fock states, some of which have a photon.

If you absorb the $\boldsymbol{\gamma},$ proton breaks up.

Understanding this from first principles is a strong-coupling nonperturbative problem (beyond ability of lattice QCD)

Main approach in widely used γ determinations: **models**.

Widely discussed photon-PDF estimates

	elastic	inelastic	public computer- readable form?
Gluck Pisano Reya 2002	dipole	model	X
MRST2004qed	X	model	
CT14qed_inc	dipole	model (data-constrained)	
Martin Ryskin 2014	dipole (only electric part)	model	X
Harland-Lang, Khoze Ryskin 2016	dipole	model	X
NNPDF23qed	no separation; fit to data		\checkmark

electron—proton scattering

- Experiments have been going on for decades
- Usually seen as photons from electron probing proton structure

electron-proton scattering

- Experiments have been going on for decades
- ► Usually seen as photons from electron probing proton structure
- > But can be viewed as electron probing proton's photonic field
- Everything about electron-proton interaction encoded in two "structure functions" $F_2(x,Q^2)$ & $F_L(x,Q^2)$

 $\frac{d\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left(\left(1 - y + \frac{y^2}{2} \left(1 + 2x^2 \frac{m_p^2}{Q^2} \right) \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right)$

Photon PDF in terms of F_2 and F_L — the LUXqed approach

 $xf_{\gamma/p}(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)}$ $\left| \left(zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_{2} \right| \right|$

It subsequently emerged that two "forgotten" papers, Anlauf et. al, CPC70(1992)97 Mukherjee & Pisano, hep-ph/0306275, had the correct integrand (but not the limits)

$$\left\{ \int_{x}^{1} \frac{dz}{z} \left\{ \int_{\frac{x^{2}m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{dQ^{2}}{Q^{2}} \alpha^{2}(Q^{2}) \right. \\ \left. F_{2}(x/z,Q^{2}) - z^{2}F_{L}\left(\frac{x}{z},Q^{2}\right) \right] \\ \left. - \alpha^{2}(\mu^{2})z^{2}F_{2}\left(\frac{x}{z},\mu^{2}\right) \right\} \right\}$$

. . . .

DATA

> x, Q^2 plane naturally breaks up into regions with different physical behaviours and data sources

 \blacktriangleright We don't use F_2 and F_L data directly, but rather various fits to data

ELASTIC COMPONENT

- Elastic component of $F_{2/L}$ lives at x=1
- Express in terms of Sachs Form Magnetic FF / (µ_p dipole)
 1.15
 1.15
 1.11
 1.12
 1.12
 1.11

RESONANCE COMPONENT

- proton gets excited, e.g. to $\Delta \rightarrow p\pi$ and higher resonances
- ► relevant for $(m_p+m_\pi)^2 < W^2 < 3.5 GeV^2$

CONTINUUM COMPONENT

- \blacktriangleright Less direct data for F_2 and F_L at high Q^2
- But we can reliably use PDFs and coefficient functions (up to NNLO) to calculate them
- ► Our default choice is PDF4LHC15 nnlo 100 (and zero-mass variable flavournumber scheme)

photon PDF results

Model-independent uncertainty (NNPDF) was 50–100%

0.8 up valence photon × 10 0.6 x f_i/p (x, μ^2) 0.4 0.2 $\mu = 100 \text{ GeV}$ 0 0.1 0.001 0.01

PDF4LHC15 for u_V & NNPDF23 for γ

photon PDF results

- Model-independent uncertainty (NNPDF) was 50–100%
- ► Goes down to O(1%) with LUXqed determination

$pp \rightarrow H W^+ (\rightarrow l^+v) + X \text{ at } 13 \text{ TeV}$

photon-induced contribs (LUXqed)	4.4 ± 0.1 fb
photon-induced contribs (NNPDF23)	6.0 +4.4 _{-2.9} fb
non-photon induced contributions	91.2 ± 1.8 fb

0.8 up valence photon × 10 0.6 Y from x f_i/p (x, μ^2) LUXqed 0.4 0.2 $\mu = 100 \text{ GeV}$ 0.001 0.01 0.1

PDF4LHC15 for u_V & LUXqed for v

How much light is there in the proton? [Momentum fraction]

% of proton's momentum carried by photon

ohoton momentum [%]

momentum ($\mu = 100 \text{ GeV}$)		
gluon	46.8 ± 0.4%	
up valence	18.2 ± 0.3%	
down valence	7.5 ± 0.2%	
light sea quarks	20.7 ± 0.4%	
charm	$4.0 \pm 0.1\%$	
bottom	2.5 ± 0.1%	
photon	0.426 ± 0.003%	

LUXqed_plus_PDF4LHC15_nnlo_100

(1+107 members, symmhessian, errors handled by LHAPDF out of the box,

valid for $\mu > 10$ GeV)

CONCLUSIONS

Summary

► The LHC has a rich programme in the years ahead to establish large parts of the Higgs sector of the Standard Model

- precision in understanding proton–proton collisions
- Search for New Physics (BSM) continues, aided by the progress

Extracting qualitatively new information, depends on quantitative

> New ways of thinking about precision LHC physics can bring big payoffs (and solve long-standing basic physics problems, e.g. v PDF)

EXTRA SLIDES

$1 \, \text{fb}^{-1} = 10^{14} \, \text{collisions}$

Future 2018: 100 fb⁻¹ @ 13 TeV **2023:** 300 fb⁻¹ @ 1? TeV **2035:** 3000 fb⁻¹ @ 14 TeV

Today > 20 fb⁻¹ @ 8 TeV > 13 fb⁻¹ @ 13 TeV (results)

Discovery potential: (now \rightarrow HL-LHC) > (run I \rightarrow now)

But not clear that dark matter is "standard" WIMP-like

[...] Standard cosmological [... simulations with] dark matter halos [...] do not naturally lead to realistic galaxies [44, 46]. Complicated [...] "feedback" must be invoked [...] Whether such processes can satisfactorily explain the radial acceleration relation and its small scatter remains to be demonstrated [47, 48].

PRL117, 201101 (2016)

baryon-induced component of acceleration

But not clear that dark matter is "standard" WIMP-like

[...] Standard cosmological [... simulations with] dark matter halos [...] do not naturally lead to realistic galaxies [44, 46]. Complicated [...] "feedback" must be invoked [...] Whether such processes can satisfactorily explain the radial acceleration relation and its small scatter remains to be demonstrated [47, 48].

observeo

Comments: 26 pages

dark matt to set limi met. Conn non-vanis

ex)

radiative effe experimenta Collider; and the vector m class of mode

PRL117, 201101 (2016)

sonant production of lepton-antilepton pairs at the Large Hadron rurthermore, radiative effects also generate an irreducible mass mixing between or oy ElectroWeak Precision Tests. We use current experimental results to put bounds on this avely induced and tree-level processes. Remarkably, the former often overwhelm the latter.

HIGGS now & future

What do we know today? Broad picture looks standard-model like

- Coupling to electroweak and 3rd generation looks standard
 - ► we see expected rate of decays to ZZ and WW (and some evidence of VBF/VH)
 - \blacktriangleright observation consistent with σ (gluon fusion) means topcoupling is probably standard
 - ► fact that all cross sections look right also means bcoupling is probably standard (because it dominates in denominator of branching
 - ratios)
 - reasonable evidence that coupling to tau is standard (direct observation)
- To see the data, as is, with very non-standard (t,b,τ,W,Z) couplings would require some degree of conspiracy.

WHAT WILL THE LHC BRING?

- \blacktriangleright Run 2: observation of H \rightarrow bb (Yukawa)
- ► Run 2/3: observation of ttH (Yukawa)
- ► HL-LHC: observation of $H \rightarrow \mu\mu$ (2nd gen Yukawa)

- ► HL-LHC: Higgs width \rightarrow SM \pm 50% (BSM constraint) ► HL-LHC: $H \rightarrow invisible < 10\%$ (BSM constraint)

► HL-LHC: $gg \rightarrow HH$? ► HL-LHC: Hcc coupling?

(Higgs potential) (2nd gen Yukawa)

indirect constraints on Hcc

Fady Bishara, Ulrich Haisch, Pier Francesco Monni and Emanuele Re, arXiv:1606.09253

photon PDF

LUXged v. other photon PDFs	1.2
	1
	0.8
	1.5
	1
	10
	3
	1
	0.3 10
	3
	1
	0.3
	1(

LUXqed v. a recent fit to Drell-Yan data

F. Giuli et al, 1701.08553

IY,

di-lepton spectrum with 3ab⁻¹

LUXQED photon has few % effect on di-lepton spectrum and negligible uncertainties

boosted hadronic decays

The potential of jet substructure — hadronic W & Z peaks

Nhan Tran @ Boost 2016

The potential of jet substructure — hadronic W & Z peaks

low v. high pT

High-pt Higgs (e.g. to distinguish K_q and K_t)

what are experimental prospects? are there any theory-issues to be solved?

Higher-dimension operators cause deviations that grow as, e.g.

$$rac{\delta \sigma_{
m dim-6}}{\sigma} \sim rac{p_T^2}{\Lambda^2}$$

> In some relevant range of p_T , Λ value to which you're sensitive grows as

$$\Lambda \sim (\text{Lumi})^{1/4}$$

► that's faster than most direct searches (x100 in lumi \rightarrow x1.5 in reach for Z')

Mimasu, Sanz, Williams, arXiv: 1512.02572v

WH at large Q² with dim-6 BSM effect

SM)/SM

(data

p_{tH} [GeV]

WH at large Q² with dim-6 BSM effect

SM)/SM (data new physics isn't just a single number that's wrong (think g-2)

but rather a distinct scaling pattern of deviation (~ p_T^2)

moderate and high p_T's have similar statistical significance — so it's useful to understand whole p_T range

There are, however, issues. Notably in Z production

