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Gavin P. Salam Taming the accuracy of event generators, part 2

GPMCs and their parton showers are amazingly successful
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GPMCs and their parton showers are amazingly successful
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But imperfections matter: e.g. for jet energy calibration (affects ~1500 papers)
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Figure 30. Residual jet-flavor correction factor as a function of jet pT, corr from ������ 6.4 tune Z2*, derived
on top of inclusive JEC and defined relative to the QCD flavor mixture (left). The neutrinos are excluded
from particle jets, which brings c- and b-jet response in between that of light quarks and gluons. The lines
show the parameterizations used for residual jet-flavor corrections. Di�erence in light-quark and gluon jet
response as a function of jet pT, corr, as predicted by ������ 6.4 and ������++ 2.3 (right).

Figure 30 (left) shows the inverse of the response for di�erent flavors versus pT, relative to the
one for the QCD flavor mixture. The relative behavior of the di�erences has a weak dependence
on pT, but the absolute di�erences become smaller at high pT. This can be explained by the
asymptotic rise of the neutral hadron response towards unity at high pT and detector acceptance
e�ects becoming less significant for high-pT jets.

While ������ 6.4 and ������++ 2.3 agree well on quark flavor response, there are significant
di�erences in the gluon response modeling. A useful metric for the JES sensitivity to flavor response
modeling is the di�erence in light-quark (uds) and gluon jet response, shown in figure 30 (right).
The flavor sensitivity of the CMS PF algorithm is much reduced with respect to the CALO jets
reconstruction, as was demonstrated in ref. [13].

7.3 Flavor uncertainties

We investigate the jet fragmentation and flavor response di�erences by comparing ������ 6.4 tune
Z2* and ������++ 2.3 tune EE3C in balanced QCD dijet events. These two tunes have been shown
to cover di�erences between data and simulation in many studies of jet structure and fragmentation,
in particular for the variables used for quark and gluon tagging [49]. The jet flavors are tagged with
the matching parton flavor, based on the physics definition. As shown in figure 31, we observe
the largest response di�erences for the gluon jets, while the light-quark and heavy-flavor jets are in
good agreement in both MCs.

The parameterized response di�erences as a function of ⌘ and pT, combined with the flavor
fractions in figure 28, are propagated through the fitting procedure used for data-based residual
corrections to evaluate the systematic uncertainties from jet flavor. Jets in the barrel reference
region |⌘ | < 1.3 have flavor uncertainty only when the flavor mixture di�ers from the Z/�+jet

– 46 –

1607.03663 

term is the largest of the pile-up uncertainties and is determined by the maximum deviation in measured
density between di�erent in situ measurements under the same pile-up conditions. The flavour dependence
uncertainties are derived from simulation and account for relative flavour fractions and di�ering responses
to quark- and gluon-initiated jets. These uncertainties are described in more detail in Refs. [5, 6] and were
mentioned in Section 5.2.3 in the context of the multijet balance analysis. An additional uncertainty applied
only to b-initiated jets covers the di�erence in response between jets from light- versus heavy-flavour
quarks. The punch-through uncertainty accounts for mis-modelling of the GSC correction to jets which
pass through the calorimeter and into the muon system, taking the di�erence in jet response between data
and MC simulation in bins of muon detector activity as the systematic uncertainty. Both are discussed in
more detail in Ref. [6]. Finally, the high-pT ‘single particle’ uncertainty is derived from studies of the
response to individual hadrons and is used to cover the region beyond 2.4 TeV, where the MJB analysis
no longer has statistical power [27]. When calibrating MC samples simulated using AFII, an additional
non-closure uncertainty is applied to account for the di�erence in jet response between these samples and
those which used full detector simulation.

The total jet energy scale uncertainty is shown in Figure 20(a) as a function of jet pT for fixed ⌘jet = 0 and
in Figure 20(b) as a function of jet ⌘ for fixed pjet

T = 60 GeV. A dijet-like composition of the sample (that
is, predominantly gluons) is assumed in computing the flavour uncertainties. The uncertainties in the ⌘
intercalibration analysis are labelled ‘relative in situ JES’ with the non-closure uncertainty creating the
asymmetric peaks around ⌘ = ±2.5. Uncertainties in all other in situ measurements are combined into the
‘absolute in situ JES’ term, which also includes the single-particle uncertainty.
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Figure 20: Fractional jet energy scale systematic uncertainty components for anti-kt R = 0.4 jets (a) as a function
of jet pT at ⌘ = 0 and (b) as a function of ⌘ at pT = 60 GeV, reconstructed from particle-flow objects. The total
uncertainty, determined as the quadrature sum of all components, is shown as a filled region topped by a solid black
line. Flavour-dependent components shown here assume a dijet flavour composition.
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  Top taggers modeling dependence

BOOST2021 Y.Huang 11

Dependence of the signal efficiency and background rejection on MC generators.

● MC generator differences are the largest source of uncertainties in the calibration 
of the taggers.

● Taggers robust against different physics modeling is important.

● Difference up to 10% for 50% signal efficiency, smaller difference with higher 
signal efficiency.

ATL-PHYS-PUB-2021-028

signal efficiency background rejection

High-pt top tagging

6

POWHEG +  
Pythia8  v. Herwig7

HL-LHC will produce ~105 
top-pairs with pt > 1 TeV 
(i.e. stat accuracy < 1%) 

Yet top tagging efficiency has 
systematics ~ 10-15% today, 
driven by differences between 

showers

ATL-PHYS-PUB-2021-028

https://cdsweb.cern.ch/record/2776782/files/ATL-PHYS-PUB-2021-028.pdf
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  Top taggers modeling dependence
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Dependence of the signal efficiency and background rejection on MC generators.

● MC generator differences are the largest source of uncertainties in the calibration 
of the taggers.

● Taggers robust against different physics modeling is important.

● Difference up to 10% for 50% signal efficiency, smaller difference with higher 
signal efficiency.

ATL-PHYS-PUB-2021-028

signal efficiency background rejection

High-pt top tagging

7

Sherpa Lund hadr.

HL-LHC will produce ~105 
top-pairs with pt > 1 TeV 
(i.e. stat accuracy < 1%) 

Yet top tagging efficiency has 
systematics ~ 10% today, 

driven by differences between 
showers 

Differences are not necessarily 
affected by non-perturbative 

hadronisation model

Sherpa AHADIC hadr.

ATL-PHYS-PUB-2021-028

https://cdsweb.cern.ch/record/2776782/files/ATL-PHYS-PUB-2021-028.pdf
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Similar observations hold in low-kt Lund-plane measurements

8

James Mulligan, LBNL BOOST 2021 Aug 3, 2021

Lund plane — pp

14

ALICE-PUBLIC-2021-002

The Lund plane in pp at
p

s = 13 TeV 3

3 Analysis method

3.1 Jet reconstruction

The jets are reconstructed using the anti-kT algorithm [1] and the E-scheme [10] recombination with
resolution parameter R = 0.4, assuming the mass of the pion for each track. The required minimum track
pT is 150 MeV/c and the track acceptance is |h |< 0.9 and 0 < j < 2p . The jet pT range is between 20
and 120 GeV/c and the jet axis must be inside the fiducial acceptance of the TPC, which means at least
one jet radius away from the edges of the TPC (�0.5 < h < 0.5 and 0 < j < 2p). Jets with a track with
pT above 100 GeV/c are not used in the analysis due to poor momentum resolution of tracks in that pT
range, however the fraction of such jets in the considered jet momentum range is negligible.

3.2 Jet declustering and the Lund plane

Once the jets are reconstructed, their constituents are re-clustered with the C/A algorithm and the clus-
tering is undone. At each step of the declustering, two subjet prongs are obtained, pT,1, pT,2 with
pT,1 � pT,2. The kinematics ln(kT) and ln(R/DR) of the subleading prong are registered onto the Lund
plane. Then the process is repeated iteratively following the leading prong until a subjet with no daughter
prongs is found. It is noted that no procedure for the removal of the underlying event is applied.

The Lund plane density [3] at leading-order QCD is defined as

r(q ,kT) =
1

Njets
d2

n

dln(R/DR)dln(kT)
, (1)

where N
jets is the total number of jets and n is the total number of splittings in the selected jet pT interval.

3.3 Sequence of corrections and characterization of the detector response

This analysis requires a 3D unfolding for detector effects in the jet pT and the two axes of the Lund
plane. To perform this unfolding, a detector response is constructed on an individual splitting basis.
In order to build a response matrix, the generator level signal jets (PYTHIA8 [11] generated jets) and
the detector level jets (after the ALICE GEANT3-based detector simulation[12]) have to be matched.
This is done through a geometrical matching procedure. In order for the jet to be a match, the jets
must be within DR =

p
Dh2 +Dj2 = 0.3 of each other and be a unique match. Once a pair of matched

generator and detector-level jets is found, their splittings are also matched. This is done by finding a
unique geometrical splitting match within DRmatch =

p
Dh2 +Dj2 = 0.1 (the detector-level splitting is

the closest to the generator-level splitting within DRmatch and vice-versa).

The splitting matching process has an efficiency and a purity that are defined as a function of lnR/DR and

ln(kT), defined as Ematch =
n

match
gen
ngen

and Pmatch =
n

match
det
ndet

, where ngen and ndet are the numbers of generator and
detector-level splittings, while n

match
gen and n

match
det are the sub-samples of those that are uniquely matched.

The correction procedure is as follows:

– The Lund plane from the uncorrected data is multiplied by the matching purity to correct for
detector level splittings that are not uniquely matched to a generator level splitting.

– A three-dimensional unfolding procedure using the previously described response matrix is per-
formed.

– The unfolded Lund plane is divided by the efficiency to account for the generator level splittings
that did not have a unique detector-level match.

The Lund plane in pp at
p

s = 13 TeV 7
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Fig. 3: Left: Ratio of the fully corrected primary Lund plane density to the uncorrected Lund plane density. Right:
Fully corrected primary Lund plane density.

Fig. 4 shows the projections of the Lund plane onto both the splitting angle and kT axes. The distributions
are compared to four different MC models: PYTHIA8 Monash [11], Sherpa 2.2.8 [15] with cluster-like
hadronization (AHADIC) and with string-like hadronisation (Lund), and Herwig 7 [16]. The ratio of the
unfolded distributions to the generators are shown in the bottom panel of each figure. For the angular
projections, the generators agree within 10% and the data is suppressed (indicating fewer splittings)
compared to Herwig and PYTHIA8. The Sherpa model with cluster-like hadronization best describes
the data.

For the kT projections, similar level of agreement is found, except at high values of kT where the data is
significantly enhanced compared to both Sherpa models (up to 40%).

ALI-PREL-479188 ALI-PREL-479212

Fig. 4: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT) (right) axes, compared
to different MC generators. The ratios of the generators to the data are shown in the bottom panel.

Figure 5 shows the same projections but for different regions of the Lund plane: angular dependence
for both perturbative and non-perturbative splittings and kT dependence for both wide and narrow split-
tings. A hard cut on the the scale of the splittings kT > 1 GeV/c (kT >> LQCD) is chosen to separate
the mostly non-perturbative splittings from the mostly perturbative splittings in the Lund Plane. For the
non-perturbative splittings, the trend is similar to the inclusive case. For the perturbative splittings, the
agreement is within 20%. For the wider splittings, the trend is similar to the inclusive case. Finally, for

Lund plane density:

See also: 
     ATLAS PRL 124 222002 (2020)

Dreyer, Salam, Soyez JHEP 12 (2018) 064

8 ALICE Collaboration

the narrower splittings, the generators disagree especially at high kT by up to 50% (with large uncertain-
ties).

ALI-PREL-479196 ALI-PREL-479220

ALI-PREL-479204 ALI-PREL-479228

Fig. 5: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT ) (right) axes com-
pared to different MC generators for different regions of the Lund plane. The top left shows the angular dependence
for a non-perturbative region and the bottom left for a perturbative region. The right panels show the kT distribution
for wider splittings on the top and narrower splittings on the bottom. The ratios of the generators to the data are
shown in the bottom panel.

6 Conclusion

The fully corrected measurement of the primary Lund Plane density has been presented for charged-
particle jets in pp collisions at

p
s= 13 TeV with the ALICE detector. Through a 3D unfolding procedure,

the Lund plane density is corrected for detector effects which allows for quantitative comparisons to MC
generators. Projections of the Lund Plane density are shown in order to isolate different regions of
phase space. The data seems to be described by the generators within 10–20% except for the most
narrow, highest kT splittings where Herwig and Sherpa are suppressed relative to the data. In general,

Low-  measurement constrains MC generators pT
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3 Analysis method

3.1 Jet reconstruction

The jets are reconstructed using the anti-kT algorithm [1] and the E-scheme [10] recombination with
resolution parameter R = 0.4, assuming the mass of the pion for each track. The required minimum track
pT is 150 MeV/c and the track acceptance is |h |< 0.9 and 0 < j < 2p . The jet pT range is between 20
and 120 GeV/c and the jet axis must be inside the fiducial acceptance of the TPC, which means at least
one jet radius away from the edges of the TPC (�0.5 < h < 0.5 and 0 < j < 2p). Jets with a track with
pT above 100 GeV/c are not used in the analysis due to poor momentum resolution of tracks in that pT
range, however the fraction of such jets in the considered jet momentum range is negligible.

3.2 Jet declustering and the Lund plane

Once the jets are reconstructed, their constituents are re-clustered with the C/A algorithm and the clus-
tering is undone. At each step of the declustering, two subjet prongs are obtained, pT,1, pT,2 with
pT,1 � pT,2. The kinematics ln(kT) and ln(R/DR) of the subleading prong are registered onto the Lund
plane. Then the process is repeated iteratively following the leading prong until a subjet with no daughter
prongs is found. It is noted that no procedure for the removal of the underlying event is applied.

The Lund plane density [3] at leading-order QCD is defined as

r(q ,kT) =
1

Njets
d2

n

dln(R/DR)dln(kT)
, (1)

where N
jets is the total number of jets and n is the total number of splittings in the selected jet pT interval.

3.3 Sequence of corrections and characterization of the detector response

This analysis requires a 3D unfolding for detector effects in the jet pT and the two axes of the Lund
plane. To perform this unfolding, a detector response is constructed on an individual splitting basis.
In order to build a response matrix, the generator level signal jets (PYTHIA8 [11] generated jets) and
the detector level jets (after the ALICE GEANT3-based detector simulation[12]) have to be matched.
This is done through a geometrical matching procedure. In order for the jet to be a match, the jets
must be within DR =

p
Dh2 +Dj2 = 0.3 of each other and be a unique match. Once a pair of matched

generator and detector-level jets is found, their splittings are also matched. This is done by finding a
unique geometrical splitting match within DRmatch =

p
Dh2 +Dj2 = 0.1 (the detector-level splitting is

the closest to the generator-level splitting within DRmatch and vice-versa).

The splitting matching process has an efficiency and a purity that are defined as a function of lnR/DR and

ln(kT), defined as Ematch =
n

match
gen
ngen

and Pmatch =
n

match
det
ndet

, where ngen and ndet are the numbers of generator and
detector-level splittings, while n

match
gen and n

match
det are the sub-samples of those that are uniquely matched.

The correction procedure is as follows:

– The Lund plane from the uncorrected data is multiplied by the matching purity to correct for
detector level splittings that are not uniquely matched to a generator level splitting.

– A three-dimensional unfolding procedure using the previously described response matrix is per-
formed.

– The unfolded Lund plane is divided by the efficiency to account for the generator level splittings
that did not have a unique detector-level match.
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Fig. 3: Left: Ratio of the fully corrected primary Lund plane density to the uncorrected Lund plane density. Right:
Fully corrected primary Lund plane density.

Fig. 4 shows the projections of the Lund plane onto both the splitting angle and kT axes. The distributions
are compared to four different MC models: PYTHIA8 Monash [11], Sherpa 2.2.8 [15] with cluster-like
hadronization (AHADIC) and with string-like hadronisation (Lund), and Herwig 7 [16]. The ratio of the
unfolded distributions to the generators are shown in the bottom panel of each figure. For the angular
projections, the generators agree within 10% and the data is suppressed (indicating fewer splittings)
compared to Herwig and PYTHIA8. The Sherpa model with cluster-like hadronization best describes
the data.

For the kT projections, similar level of agreement is found, except at high values of kT where the data is
significantly enhanced compared to both Sherpa models (up to 40%).
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Fig. 4: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT) (right) axes, compared
to different MC generators. The ratios of the generators to the data are shown in the bottom panel.

Figure 5 shows the same projections but for different regions of the Lund plane: angular dependence
for both perturbative and non-perturbative splittings and kT dependence for both wide and narrow split-
tings. A hard cut on the the scale of the splittings kT > 1 GeV/c (kT >> LQCD) is chosen to separate
the mostly non-perturbative splittings from the mostly perturbative splittings in the Lund Plane. For the
non-perturbative splittings, the trend is similar to the inclusive case. For the perturbative splittings, the
agreement is within 20%. For the wider splittings, the trend is similar to the inclusive case. Finally, for

Lund plane density:

See also: 
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the narrower splittings, the generators disagree especially at high kT by up to 50% (with large uncertain-
ties).
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Fig. 5: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT ) (right) axes com-
pared to different MC generators for different regions of the Lund plane. The top left shows the angular dependence
for a non-perturbative region and the bottom left for a perturbative region. The right panels show the kT distribution
for wider splittings on the top and narrower splittings on the bottom. The ratios of the generators to the data are
shown in the bottom panel.

6 Conclusion

The fully corrected measurement of the primary Lund Plane density has been presented for charged-
particle jets in pp collisions at

p
s= 13 TeV with the ALICE detector. Through a 3D unfolding procedure,

the Lund plane density is corrected for detector effects which allows for quantitative comparisons to MC
generators. Projections of the Lund Plane density are shown in order to isolate different regions of
phase space. The data seems to be described by the generators within 10–20% except for the most
narrow, highest kT splittings where Herwig and Sherpa are suppressed relative to the data. In general,

Low-  measurement constrains MC generators pT
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3 Analysis method

3.1 Jet reconstruction

The jets are reconstructed using the anti-kT algorithm [1] and the E-scheme [10] recombination with
resolution parameter R = 0.4, assuming the mass of the pion for each track. The required minimum track
pT is 150 MeV/c and the track acceptance is |h |< 0.9 and 0 < j < 2p . The jet pT range is between 20
and 120 GeV/c and the jet axis must be inside the fiducial acceptance of the TPC, which means at least
one jet radius away from the edges of the TPC (�0.5 < h < 0.5 and 0 < j < 2p). Jets with a track with
pT above 100 GeV/c are not used in the analysis due to poor momentum resolution of tracks in that pT
range, however the fraction of such jets in the considered jet momentum range is negligible.

3.2 Jet declustering and the Lund plane

Once the jets are reconstructed, their constituents are re-clustered with the C/A algorithm and the clus-
tering is undone. At each step of the declustering, two subjet prongs are obtained, pT,1, pT,2 with
pT,1 � pT,2. The kinematics ln(kT) and ln(R/DR) of the subleading prong are registered onto the Lund
plane. Then the process is repeated iteratively following the leading prong until a subjet with no daughter
prongs is found. It is noted that no procedure for the removal of the underlying event is applied.

The Lund plane density [3] at leading-order QCD is defined as

r(q ,kT) =
1

Njets
d2

n

dln(R/DR)dln(kT)
, (1)

where N
jets is the total number of jets and n is the total number of splittings in the selected jet pT interval.

3.3 Sequence of corrections and characterization of the detector response

This analysis requires a 3D unfolding for detector effects in the jet pT and the two axes of the Lund
plane. To perform this unfolding, a detector response is constructed on an individual splitting basis.
In order to build a response matrix, the generator level signal jets (PYTHIA8 [11] generated jets) and
the detector level jets (after the ALICE GEANT3-based detector simulation[12]) have to be matched.
This is done through a geometrical matching procedure. In order for the jet to be a match, the jets
must be within DR =

p
Dh2 +Dj2 = 0.3 of each other and be a unique match. Once a pair of matched

generator and detector-level jets is found, their splittings are also matched. This is done by finding a
unique geometrical splitting match within DRmatch =

p
Dh2 +Dj2 = 0.1 (the detector-level splitting is

the closest to the generator-level splitting within DRmatch and vice-versa).

The splitting matching process has an efficiency and a purity that are defined as a function of lnR/DR and

ln(kT), defined as Ematch =
n

match
gen
ngen

and Pmatch =
n

match
det
ndet

, where ngen and ndet are the numbers of generator and
detector-level splittings, while n

match
gen and n

match
det are the sub-samples of those that are uniquely matched.

The correction procedure is as follows:

– The Lund plane from the uncorrected data is multiplied by the matching purity to correct for
detector level splittings that are not uniquely matched to a generator level splitting.

– A three-dimensional unfolding procedure using the previously described response matrix is per-
formed.

– The unfolded Lund plane is divided by the efficiency to account for the generator level splittings
that did not have a unique detector-level match.
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Fig. 3: Left: Ratio of the fully corrected primary Lund plane density to the uncorrected Lund plane density. Right:
Fully corrected primary Lund plane density.

Fig. 4 shows the projections of the Lund plane onto both the splitting angle and kT axes. The distributions
are compared to four different MC models: PYTHIA8 Monash [11], Sherpa 2.2.8 [15] with cluster-like
hadronization (AHADIC) and with string-like hadronisation (Lund), and Herwig 7 [16]. The ratio of the
unfolded distributions to the generators are shown in the bottom panel of each figure. For the angular
projections, the generators agree within 10% and the data is suppressed (indicating fewer splittings)
compared to Herwig and PYTHIA8. The Sherpa model with cluster-like hadronization best describes
the data.

For the kT projections, similar level of agreement is found, except at high values of kT where the data is
significantly enhanced compared to both Sherpa models (up to 40%).
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Fig. 4: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT) (right) axes, compared
to different MC generators. The ratios of the generators to the data are shown in the bottom panel.

Figure 5 shows the same projections but for different regions of the Lund plane: angular dependence
for both perturbative and non-perturbative splittings and kT dependence for both wide and narrow split-
tings. A hard cut on the the scale of the splittings kT > 1 GeV/c (kT >> LQCD) is chosen to separate
the mostly non-perturbative splittings from the mostly perturbative splittings in the Lund Plane. For the
non-perturbative splittings, the trend is similar to the inclusive case. For the perturbative splittings, the
agreement is within 20%. For the wider splittings, the trend is similar to the inclusive case. Finally, for

Lund plane density:

See also: 
     ATLAS PRL 124 222002 (2020)
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the narrower splittings, the generators disagree especially at high kT by up to 50% (with large uncertain-
ties).
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Fig. 5: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT ) (right) axes com-
pared to different MC generators for different regions of the Lund plane. The top left shows the angular dependence
for a non-perturbative region and the bottom left for a perturbative region. The right panels show the kT distribution
for wider splittings on the top and narrower splittings on the bottom. The ratios of the generators to the data are
shown in the bottom panel.

6 Conclusion

The fully corrected measurement of the primary Lund Plane density has been presented for charged-
particle jets in pp collisions at

p
s= 13 TeV with the ALICE detector. Through a 3D unfolding procedure,

the Lund plane density is corrected for detector effects which allows for quantitative comparisons to MC
generators. Projections of the Lund Plane density are shown in order to isolate different regions of
phase space. The data seems to be described by the generators within 10–20% except for the most
narrow, highest kT splittings where Herwig and Sherpa are suppressed relative to the data. In general,

Low-  measurement constrains MC generators pT
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3 Analysis method

3.1 Jet reconstruction

The jets are reconstructed using the anti-kT algorithm [1] and the E-scheme [10] recombination with
resolution parameter R = 0.4, assuming the mass of the pion for each track. The required minimum track
pT is 150 MeV/c and the track acceptance is |h |< 0.9 and 0 < j < 2p . The jet pT range is between 20
and 120 GeV/c and the jet axis must be inside the fiducial acceptance of the TPC, which means at least
one jet radius away from the edges of the TPC (�0.5 < h < 0.5 and 0 < j < 2p). Jets with a track with
pT above 100 GeV/c are not used in the analysis due to poor momentum resolution of tracks in that pT
range, however the fraction of such jets in the considered jet momentum range is negligible.

3.2 Jet declustering and the Lund plane

Once the jets are reconstructed, their constituents are re-clustered with the C/A algorithm and the clus-
tering is undone. At each step of the declustering, two subjet prongs are obtained, pT,1, pT,2 with
pT,1 � pT,2. The kinematics ln(kT) and ln(R/DR) of the subleading prong are registered onto the Lund
plane. Then the process is repeated iteratively following the leading prong until a subjet with no daughter
prongs is found. It is noted that no procedure for the removal of the underlying event is applied.

The Lund plane density [3] at leading-order QCD is defined as

r(q ,kT) =
1

Njets
d2

n

dln(R/DR)dln(kT)
, (1)

where N
jets is the total number of jets and n is the total number of splittings in the selected jet pT interval.

3.3 Sequence of corrections and characterization of the detector response

This analysis requires a 3D unfolding for detector effects in the jet pT and the two axes of the Lund
plane. To perform this unfolding, a detector response is constructed on an individual splitting basis.
In order to build a response matrix, the generator level signal jets (PYTHIA8 [11] generated jets) and
the detector level jets (after the ALICE GEANT3-based detector simulation[12]) have to be matched.
This is done through a geometrical matching procedure. In order for the jet to be a match, the jets
must be within DR =

p
Dh2 +Dj2 = 0.3 of each other and be a unique match. Once a pair of matched

generator and detector-level jets is found, their splittings are also matched. This is done by finding a
unique geometrical splitting match within DRmatch =

p
Dh2 +Dj2 = 0.1 (the detector-level splitting is

the closest to the generator-level splitting within DRmatch and vice-versa).

The splitting matching process has an efficiency and a purity that are defined as a function of lnR/DR and

ln(kT), defined as Ematch =
n

match
gen
ngen

and Pmatch =
n

match
det
ndet

, where ngen and ndet are the numbers of generator and
detector-level splittings, while n

match
gen and n

match
det are the sub-samples of those that are uniquely matched.

The correction procedure is as follows:

– The Lund plane from the uncorrected data is multiplied by the matching purity to correct for
detector level splittings that are not uniquely matched to a generator level splitting.

– A three-dimensional unfolding procedure using the previously described response matrix is per-
formed.

– The unfolded Lund plane is divided by the efficiency to account for the generator level splittings
that did not have a unique detector-level match.
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Fig. 3: Left: Ratio of the fully corrected primary Lund plane density to the uncorrected Lund plane density. Right:
Fully corrected primary Lund plane density.

Fig. 4 shows the projections of the Lund plane onto both the splitting angle and kT axes. The distributions
are compared to four different MC models: PYTHIA8 Monash [11], Sherpa 2.2.8 [15] with cluster-like
hadronization (AHADIC) and with string-like hadronisation (Lund), and Herwig 7 [16]. The ratio of the
unfolded distributions to the generators are shown in the bottom panel of each figure. For the angular
projections, the generators agree within 10% and the data is suppressed (indicating fewer splittings)
compared to Herwig and PYTHIA8. The Sherpa model with cluster-like hadronization best describes
the data.

For the kT projections, similar level of agreement is found, except at high values of kT where the data is
significantly enhanced compared to both Sherpa models (up to 40%).
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Fig. 4: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT) (right) axes, compared
to different MC generators. The ratios of the generators to the data are shown in the bottom panel.

Figure 5 shows the same projections but for different regions of the Lund plane: angular dependence
for both perturbative and non-perturbative splittings and kT dependence for both wide and narrow split-
tings. A hard cut on the the scale of the splittings kT > 1 GeV/c (kT >> LQCD) is chosen to separate
the mostly non-perturbative splittings from the mostly perturbative splittings in the Lund Plane. For the
non-perturbative splittings, the trend is similar to the inclusive case. For the perturbative splittings, the
agreement is within 20%. For the wider splittings, the trend is similar to the inclusive case. Finally, for

Lund plane density:

See also: 
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the narrower splittings, the generators disagree especially at high kT by up to 50% (with large uncertain-
ties).
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Fig. 5: The projections of the primary Lund plane density onto the ln(R/DR) (left) and ln(kT ) (right) axes com-
pared to different MC generators for different regions of the Lund plane. The top left shows the angular dependence
for a non-perturbative region and the bottom left for a perturbative region. The right panels show the kT distribution
for wider splittings on the top and narrower splittings on the bottom. The ratios of the generators to the data are
shown in the bottom panel.

6 Conclusion

The fully corrected measurement of the primary Lund Plane density has been presented for charged-
particle jets in pp collisions at

p
s= 13 TeV with the ALICE detector. Through a 3D unfolding procedure,

the Lund plane density is corrected for detector effects which allows for quantitative comparisons to MC
generators. Projections of the Lund Plane density are shown in order to isolate different regions of
phase space. The data seems to be described by the generators within 10–20% except for the most
narrow, highest kT splittings where Herwig and Sherpa are suppressed relative to the data. In general,

Low-  measurement constrains MC generators pT



Parton showers contain immense information accessible via ML

9

Convolutational Neural Networks and Jet Images

I Project a jet onto a fixed n ⇥ n pixel image in rapidity-azimuth, where
each pixel intensity corresponds to the momentum of particles in that
cell.

I Can be used as input for classification methods used in computer
vision, such as deep convolutional neural networks.

[Cogan, Kagan, Strauss, Schwartzman JHEP 1502 (2015) 118]
[de Oliveira, Kagan, Mackey, Nachman, Schwartzman JHEP 1607 (2016) 069]
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FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

(a) ParticleNet

coordinates features

EdgeConv Block
k = 7, C = (32, 32, 32)

EdgeConv Block
k = 7, C = (64, 64, 64)

Global Average Pooling

Fully Connected
128, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

(b) ParticleNet-Lite

FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector

Qu & Guskos, 
arXiv:1902.08570

2021 Young Experimental Physicist Prize EPS HEPP prize

https://arxiv.org/abs/1902.08570


using full jet/event information for H/W/Z-boson tagging

10

ba
ck

gr
ou

nd
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signal efficiency

adapted from 
Dreyer & Qu 
2012.08526 

p p

H/W/Z

QCD rejection  
with use of full jet  

substructure 
(2021 tools) 

100x better

First started to be exploited 
by Thaler & Van Tilburg with  
“N-subjettiness”  (2010/11)

x100

QCD rejection with 
just jet mass 

(SD/mMDT) 
i.e. 2008 tools & 

their 2013/14 
descendants 

https://arxiv.org/abs/2012.08526
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high pT Higgs & [SD] jet mass
We wouldn’t trust electromagnetism if 
we’d only tested it at one length/
momentum scale. 

New Higgs interactions need testing at 
both low and (here) high momenta.

11

high-pT  
Z → bb

high-pT  
H → bb  

(2.5 σ)

p p

H

arXiv:2006.13251 

http://arxiv.org/abs/2006.13251
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incoming beam particle

intermediate particle 
(quark or gluon)

final particle (hadron)

Event evolution spans 7 orders of 
magnitude in space-time 

[This is a Pythia8 event, reinterpreted as a time-
sequence with gen-kt (p=1/2) clustering]

http://panscales.org/videos.html e+e− → qq̄, s = 3 TeV

http://panscales.org/videos.html
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Where is shower accuracy useful / necessary?

14

shower  ME  → matching essential

≠
2

hard scale

non-perturbative region

} Full matrix-element needed 
for  ? 

It might be interesting to 
understand the scaling with  
of (shower/ME  – 1).

kt ≳ 0.1 ̂s

kt
2
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Where is shower accuracy useful / necessary?

15

shower  ME  → matching essential

≠
2

hard scale

non-perturbative region

} Full matrix-element needed 
for  ?kt ≳ 0.1 ̂s

}  of first emission 
(median and 68% interval)
kt1

That first emission often in a 
region where  (i.e. a 
shower may be a good 
approx.)

kt ≪ ̂s
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Where is shower accuracy useful / necessary?
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shower  ME  → matching essential

≠
2

hard scale

non-perturbative region

} Full matrix-element needed 
for  ?kt ≳ 0.1 ̂s

}  of first emission 
(median and 68% interval)
kt

} median  of 2nd, 3rd, etc. 
emissions

kt

1

2
3
4

the shower will be attempting 
to get all of these “right”, 
together with the virtual 
corrections
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Where is shower accuracy useful / necessary?
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shower  ME  → matching essential

≠
2

hard scale

non-perturbative region

} Full matrix-element needed 
for  ?kt ≳ 0.1 ̂s

}  of first emission 
(median and 68% interval)
kt

} median  of 2nd, 3rd, etc. 
emissions

kt

1

2
3
4

the shower will be attempting 
to get all of these “right”, 
together with the virtual 
corrections



what should a parton shower 
achieve?

18

not just a question of ingredients,  
but also the final result of assembling them together



it’s a complicated issue…

➤ For a total cross section, e.g. for Higgs production, it’s easy to talk about systematic 
improvements (LO, NLO, NNLO, …). But they’re restricted to that one observable

19

how can you prescribe correctness & accuracy of the answer,  
when the questions you ask can be arbitrary?

➤ With a parton shower (+hadronisation) you produce a “realistic” full set of 
particles. You can ask questions of arbitrary complexity: 

➤ the multiplicity of particles 

➤ the total transverse momentum with respect to some axis (broadening) 

➤ the angle of 3rd most energetic particle relative to the most energetic one 
[machine learning might “learn” many such features]



Phenomenology: lecture 4 (93/101)

Choosing the right QCD tools

Example: thrust
Thrust — a QCD ‘guinea pig’

First discussion goes back to 1964. Serious work got going in late ’70s.
Thrust is one of many continous measures of the event ‘shape’:

T = max
!nT

∑

i |!pi .!nT |
∑

i |!pi |
,

2-jet event: T ! 1 3-jet event: T ! 2/3

There exist many other measures of aspects of the shape: Thrust-Major,
C-parameter, broadening, heavy-jet mass, jet-resolution parameters,. . .

⃗nT

NLL means controlling O(1) terms

It’s been common to hear that showers are Leading Logarithmic (LL) accurate.  

That language, widespread for multiscale problems, comes from  
analytical resummations. E.g. transverse momentum broadening 

You can resum cross section for  to be very small (as it is in most events) B

20

σ(ln B < − L) = σtot exp [Lg1(αsL) + g2(αsL) + αsg3(αsL) + α2
s g4(αsL) + ⋯]

LL ~ O( )1
α NLL ~ O(1) NNLL ~ O( )α N3LL ~ O( )α2

Thrust: Catani, Trentadue, Turnock & Webber ’93 Thrust: Becher & Schwartz ’08

[αs ≪ 1, αsL ∼ 1]

B =
∑i | ⃗pi × ⃗nT |

∑i | ⃗pi |



PanScales proposal for investigating shower accuracy

21

Resummation 

Establish logarithmic accuracy for main classes of resummation: 

➤ global event shapes (thrust, broadening, angularities, jet rates, energy-energy 
correlations, …) 

➤ non-global observables (cf. Banfi, Corcella & Dasgupta, hep-ph/0612282) 

➤ fragmentation / parton-distribution functions 

➤ multiplicity, cf. original Herwig angular-ordered shower from 1980’s 

Matrix elements 

Establish in what sense iteration of (e.g. 2→3) splitting kernel 
reproduces N-particle tree-level matrix elements for any N. 
Because this kind of info is exploited by machine-learning algorithms.

Aim for NLL,  
control of αn

s Ln

Aim for NDL, i.e. 
αn

s L2n−1

Aim for correctness 
when all particles 
well separated in  
Lund diagram

Baseline “NLL” requirements

I view this as a working proposal, rather than the ultimate classification 
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Some core principles for NLL showers
1. for a new emission , when it is generated far in the Lund diagram from any other emission 

( ), it should not modify the kinematics (Lund coordinates) of any 
preceding emission by more than an amount , where   

2. when  is distant from other emissions, generate it with matrix element and phasespace 
(and associated Sudakov) 
 

3. emission  should not impact  ratio for subsequent distant emissions unless 

a. they are at commensurate angle (or on ’s Lund “leaf”), or 

b.  was a hard collinear splitting, which can affect other hard collinear splittings 
(cross-talk on same leaf ≡ DGLAP, cross-talk on other leaves ≡ spin correlations)

k
|dLund

ki | ≫ 1
exp(−p |dLund

ki | ) p = 𝒪(1)

k

k dΦ × |M |2

k

k

22

dΦk

dΦk−1

|M1…k |2

|M1…(k−1) |
2

[simple forms known from 
factorisation properties of 

matrix-elements]
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candidate NLL final-state 
showers

PanScales, FHP & Deductor 
all based on colour dipoles 

all split the dipoles ~ in event centre-of-mass 
[other dipole/antenna showers split in dipole centre-of-mass]

23
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PanLocal 

 ordered 

Recoil 
: local 

+: local 
–: local 

Tests 
numerical  
for many 

observables

kt θ

⊥

FHP 

 ordered 

Recoil 
: global 

+:  local  
–: global 

Tests 
analytical  

for thrust & 
multiplicity

kt

⊥

Deductor 

 (“Λ”) ordered 

Recoil 
:  local 

+:  local  
–: global 

Tests 
analytical /
numerical  
for thrust

ktθ

⊥

PanGlobal 

 or  ordered 

Recoil 
: global 

+: local 
–:  local 

Tests 
numerical  
for many 

observables

kt kt θ

⊥

Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez 2002.11114 Forshaw, Holguin & Plätzer 
2003.06400

Nagy & Soper 
2011.04777 (+past decade)

https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/2011.04777
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Deductor: thrust checks (numerics at 2nd & 3rd order + all-order analytics)

25
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⇤ ordering, Deductor-Local
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2 (⌫)i

dhI [2]
2 (⌫)i/d log(⌫)

FIG. 9. Plot of hI [2]
2 (⌫)i, as in Fig. 1, for the Deductor

splitting functions with the Catani-Seymour local momentum

mapping [23]. hI [2]
2 (⌫)i is approximately quadratic in log(⌫),

indicating that I [2]
2 (⌫) that changes the NLL result.

i /2 {l,m+1} in Eq. (158) and this is the same as parton
k in Eq. (159). That is, the global and local mappings

are the same for S
[1]
Y (µ2; ⌫) for m = 2. The operators

S
[k]
Y (µ2; ⌫), with k real or virtual splittings, do depend

on the choice of momentum mapping for k � 2 .
The local momentum mapping has a feature for thrust

that one might regard as peculiar. Suppose that parton l
is in the right thrust hemisphere, l 2 R. Then for a small
angle splitting, the daughter partons l and m+1 will also
be in the right hemisphere. In the case that k 2 R,
we split a dipole that is entirely in R. Then Eqs. (160)
and (161) imply that both ⌧R and ⌧L in Eq. (27) are
unchanged by the splitting, so that ⌧ = ⌧R + ⌧L is un-
changed. Since, in this class of choices for the dipole that
splits, the thrust is not changed, the real-virtual cance-
lation between S

[1,0](µ2) and S
[0,1](µ2) simply removes

contributions of these dipoles from the calculation of the
thrust distribution.

With ⇤ ordering and a local momentum mapping, the
argument in Sec. XI that the shower sums logarithms
of thrust at LL level still works, but the argument in
Appendix A for cancellations at the NLL level fails. Thus
we cannot expect a ⇤-ordered parton shower that uses a
local momentum mapping following Eqs. (160) and (161)
to properly sum the logarithms of ⌫ at NLL accuracy.

We can check what happens numerically by calculat-

ing hI
[2]
2 (⌫)i, Eq. (151), using the ⇤-ordered Deductor

parton shower algorithm but with the Catani-Seymour
momentum mapping substituted for the global momen-

tum mapping. The result is shown as the solid red
curve in Fig. 9. We note immediately that this result
is completely di↵erent from the result in Fig. 1: in the

range log(⌫) < 8, |hI [2]
2 (⌫)i| with the global momentum

mapping is less than 1 while with the local mapping it
reaches values greater than 30. Leaving aside the mag-

nitude of hI [2]
2 (⌫)i, if the parton shower algorithm with

a local momentum mapping produced NLL accuracy for

summing log(⌫) factors, the graph of hI [2]
2 (⌫)i would be

a straight line, but it is not. The dashed blue curve

is dhI [2]
2 (⌫)i/d log(⌫). This curve is not a constant but

rather a straight line. This implies that at large log(⌫),

hI
[2]
2 (⌫)i is has contributions up to log2(⌫).
We conclude from the combination of the analytical

argument and the numerical results that using a local
momentum mapping destroys the NLL accuracy of the
result from a ⇤-ordered parton shower, although LL ac-
curacy is maintained.

XVII. LOCAL MOMENTUM MAPPING WITH
OTHER ORDERINGS

As we have seen in Sec. XVI, a parton shower algorithm
needs to conserve momentum while accommodating the
approximation that a parton that splits to two partons
was on shell before the splitting. Deductor uses a
global recoil strategy that spreads the needed momen-
tum over all of the other partons in the event. With a lo-
cal momentum mapping in the style of Catani-Seymour,
Eq. (159), the recoil momentum is taken up by a single
parton, possibly a very soft parton. For this reason the
global recoil strategy seems less likely to lead to problems
than the local recoil strategy.

Nevertheless, a local momentummapping can certainly
work. Indeed, we present an argument in Appendix B

that I
[2]
2 (⌫) in Deductor with kT ordering is well be-

haved. In this construction, the local and global momen-
tum mappings were equivalent in the limits considered.

Thus I
[2]
2 (⌫) with kT ordering and a local momentum

mapping should be well behaved.

We can investigate this issue by calculating hI
[2]
2 (⌫)i

using two shower algorithms with a local momentum
mapping following Eq. (159). The algorithms we use
follow closely the PanLocal shower of Ref. [3]. In the
first algorithm that we use, the parameter � that defines
the ordering variable in the PanLocal algorithm is set to
� = 0. That corresponds to kT ordering. In the second
algorithm, we choose � = 0.5. Roughly, that is half way
between kT ordering and ⇤ ordering. Ref. [3] claims that
these PanLocal showers sum the trust distribution at
NLL accuracy at leading color.

The results are shown in Figs. 10 and 11. In each case,

in the range log(⌫) < 8, |hI [2]
2 (⌫)i| reaches values greater

than 10, while for Deductor with ⇤ ordering this same
quantity is less than 1. Nevertheless, in each case, we

global (‒) recoil 
flat line: NLL OK

local (‒) reco
il 

sloped line:  

NLL not OK

Nagy & Soper, 2011.04777

https://arxiv.org/abs/2011.04777
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FHP: analytic checks

26

where a parametrises the observable dependence (for thrust a ∼ 1 − T ), xi ∼ qi⊥/Q

and Θ(f(a, {xi})) parametrises any residual more complex observable dependence. Note

that both terms in the square bracket are monotonically decreasing as xi → 0 and that the

second is always of smaller magnitude than the first. Thus I evaluates to having the largest

possible magnitude when Θ(f(a, {xi})) = 1, as every point in the domain of the integrand

adds constructively to the integral. Therefore we will work assuming Θ(f(a, {xi})) = 1 in

order to place an upper limit on the order of logarithms produced. With this assumption

applied, I is dominated by the term

In ≈
∫ 1

a

dxn
xn

...

∫ 1

x2

dx1
x1





n
∑

j=1

ln

(

xj

(

1−
εx2j
2

))

n
∏

i "=j

ln(xi)−
n
∏

i=1

ln(xi)



 , (D.3)

which is in turn proportional to g2n−2(a, ε) − g2n−2(a, 0) where

gn(a, ε) =

∫ 1

a

dx

x
ln

(

x

(

1−
εx2

2

))

ln(x)n. (D.4)

For large n, gn is difficult to evaluate. However we can navigate this by constructing a

generating function for gn,

GF (a, ε, ν) =

∫ 1

a
dx xν−1 ln

(

x

(

1−
εx2

2

))

, (D.5)

so that gn = (∂ν)nGF |ν=0 and

GF (a, ε, ν) =
aν − 1

ν2
+

ε
(

2F1
(

1, ν2 + 1; ν2 + 2; ε
2

)

− aν+2
2F1

(

1, ν2 + 1; ν2 + 2; a
2ε
2

))

ν(ν + 2)

+
ln(2)aν − ln(2) + ln(2− ε)− aν ln

(

2a− a3ε
)

ν
. (D.6)

The Taylor series in ν of GF (a, ε, ν) can be computed. The series is expressible in the form

GF (a, ε, ν) −GF (a, 0, ν) =
∞
∑

n=0

(

n
∑

i=0

Ai,n ln(a)
n−iLi2+i

(aε

2

)

+BnLi2+n

( ε

2

)

)

νn

n!
, (D.7)

where Ai,n and Bn are order unity constants that we do not need. Thus

δΣ(L) !
∞
∑

n=2

αn
s

(2n − 2)!

(

2n−2
∑

i=0

Ãi,n ln(1− T )2n−2−iLi2+i

(

(1− T )ε

2

)

+ B̃nLi2n
( ε

2

)

)

,

(D.8)

where L = ln(1 − T ), and Ãi,n and B̃n are order unity constants. Hence for T ≈ 1,

the limit in which we resum, δΣ(L) %
∑

n
αn
s Cn

n! ln(1 − T )2n−2 where Cn are also order

unity coefficients. Also note that the first logarithmic enhancement from our recoil scheme

occurs as ∼ α4
sL

2. Finally, we note that this argument applies to recoil distributed along

– 38 –

i.e. each φ̃ is simply related to each φ by momentum conservation. At our accuracy,

momentum conservation simply maps Eq → z1Eq and Eg = (1 − z1)Eq since κq1 and the

Lorentz boost are unity at our desired accuracy (noting the argument for neglecting the

changes in phase-space due to our recoil scheme given in the previous subsection also holds

for this resummation as the measurement function is unity and we are resumming logs

up to αn
s L

2n−1 accuracy). The limits on the z integrals capture angular ordering at NLL

accuracy whilst still using a k⊥ ordering variable. ∆c(a, b) is a Sudakov factor

∆c(a, b) = exp






−
αs

2π

∫ b

a

dk(c!n)⊥

k(c!n)⊥

∫ 1−
k
(c!n)
⊥
2Q

k
(c!n)
⊥
2Q

dzPcc(z)






. (D.15)

We can factorise Eq. (D.13) as

φqq̄(u,Q) =

(

φq(u, q⊥ 1)∆q(q⊥ 1, Q)

+
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1−
q⊥
2Q

q⊥
2Q

dzPqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥)

)

× (q ↔ q̄) +O(α2
s). (D.16)

keeping only terms first order in αs
22. From this, we can identify

φq(u,Q) =φq(u, q⊥ 1)∆q(q⊥ 1, Q)

+
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1−
q⊥
2Q

q⊥
2Q

dzPqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥). (D.17)

This expression is correct at LL accuracy with complete colour and only requires the

coupling to run as αs(z(1 − z)q⊥) in order to capture the full NLL (αn
sL

2n−1) result. We

also can note that the correct NLL resummation might not have been achieved using the

local dipole prescription presented in Appendix C. This is because the recoil could introduce

a correction in the n > 3 jet limit of the form φq̄(u, q⊥ 1)! φq̄(u, |q⊥ 1 − q⊥ 2|) (the wavy

arrow implying that it will approximately go to). This correction prevents both the usage

of naive azimuthal averaging and the factorisation φqq̄ ≡ φqφq̄ (which naturally emerged

between Eq. (D.13) and Eq. (D.16)), though it is possible that these features could re-

emerge once the phase space of each jet has been inclusively integrated over. Due to the

other known NLL limitations of this recoil scheme, we did not think it worthwhile further

proceeding to evaluate the order of these errors but rather conjecture that NLL errors will

also be likely here.

References

[1] T. Sjöstrand and P. Z. Skands, Transverse-momentum-ordered showers and interleaved
multiple interactions, Eur. Phys. J. C39 (2005) 129–154, [hep-ph/0408302].

22The O(α2
s) terms can be computed by instead starting with H

(e+e−→qq̄[g][g])(q2⊥) = A0(q2⊥) +

uA1(q2⊥) + u2
A2(q2⊥) and proceeding as above.
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Forshaw, Holguin & Plätzer 2003.06400

thrust

subjet multiplicity

[NB: formulas here show NDL rather than NLL] 
[multiplicity is only known to NDL]

https://arxiv.org/abs/2003.06400
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PanScales showers: all-order αs → 0 limits

27

4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez 2002.11114 

https://arxiv.org/abs/2002.11114
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Herwig angular-ordered showers
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Angular ordered showers can’t get exact non-global 
logarithms (with ideas so far), but numerically not too bad an 
approximation; it seems conceivable they do get everything 
else right at NLL/NDL — and they have the advantage of 
being available in Herwig & tuned. Should they be the interim 
go-to “almost” NLL shower?  0.1

 1
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Figure 4: Σ(t) vs t for a square patch in rapidity and azimuth, ∆η = ∆φ = 2.0. Primary, full and
angular-ordered (AO) curves are shown.
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Figure 5: The non-global contribution S(t) as a function of t for a square patch in rapidity and
azimuth, ∆η = ∆φ = 2.0.

quantity S(t). This effect becomes even less significant for the quantity Σ(t) = ΣP (t)S(t)

since the primary contribution ΣP (t) ≡ exp[−4CFAΩt] is unchanged by imposing angular

ordering, which we also explicitly checked with the code.

– 12 –

angular orderedfull

Banfi, Corcella, Dasgupta,  
hep-ph/0612282

Energy flow into a patch

https://arxiv.org/abs/1904.11866
https://arxiv.org/abs/2107.04051
https://arxiv.org/abs/hep-ph/0612282
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quantum v classical?
spin & colour
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NLL: when should effective shower  to be correct?|M2 |

➤ we should be able to reproduce 
 when all emissions well 

separated in Lund diagram 
, , , etc.

|M2 |

d12 ≫ 1 d23 ≫ 1 d15 ≫ 1

30

ln pt

η

1

2 3
45

➤ a shower with simple 1→2 or 2→3 
splittings can’t reproduce full 
matrix element 

➤ but QCD has amazing factorisation 
properties — simplifications in 
presence of energy or angular 
ordering
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NLL: when should effective shower  to be correct?|M2 |

31

ln pt

η

1

2 3

45

➤ a shower with simple 1→2 or 2→3 
splittings can’t reproduce full 
matrix element 

➤ but QCD has amazing factorisation 
properties — simplifications in 
presence of energy or angular 
ordering

➤ we allow ourselves to make a 
mistake (by  factor) when a 
pair is close by, e.g. 

𝒪(1)
d23 ∼ 1
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NLL: when should effective shower  to be correct?|M2 |

32

ln pt

η

1

2 3
45

1

3

ϕ1

ϕ3

not just “classical” factorisation: 1 and 
3 are far apart in the Lund plane but 
their azimuthal angles are strongly 
correlated by quantum mechanical 
effects.

Collins algorithm makes this straightforward 
it’s in Herwig & PanScales (and others?) 

cf. Karlberg’s talk tomorrow
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Quantum spin correlations: first analytical resummations
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(a) (b)

FIG. 1: Double slit experiments in position and spin space (a), and physical implementation of the spin space
double slit experiment using the squeezed limit, ✓S ⌧ ✓L, of the three-point correlator (b). Quantum interference

between gluon spin states, � = ±, leads to a cos(2�) pattern as the squeezed correlators are rotated.

applied in QCD, and provides powerful operator based
techniques for jet substructure. We show that the iter-
ated OPE of E(n̂) operators closes at leading twist onto

operators O[J]
i (n̂) with arbitrary collinear spin-J , but re-

stricted transverse spin-j = 0, 2, and we explicitly com-

pute the E(n̂1)E(n̂2) and O
[J]
i (n̂1)E(n̂2) OPEs. The all

orders structure of spin interference e↵ects in the three-
point correlator then arises naturally from the transverse
spin structure of the light-ray OPE.

Interference in the Squeezed Limit.—The physics of the
squeezed limit of the three-point correlator in a weakly
coupled gauge theory can be described as a double slit
experiment in spin space, see Fig. 1. The interference
pattern in the usual double slit experiment is due to the
interference in |AL(x) + AR(x)|2, where AL(R)(x) is the
amplitude for going through the left (right) slit from the
light source to position x on the detector. Similarly, in
the squeezed limit of the three-point correlator, the in-
terference terms in |A+(�) + A�(�)|2 are the source of
an interference pattern, where A+(�) is the splitting am-
plitude with a nearly on-shell virtual gluon with posi-
tive (negative) helicity. Therefore the slits in the stan-
dard double slit experiment are replaced by the inter-
mediate +/� helicity gluons, and varying the distance x
is replaced by varying the angle � of the squeezed en-
ergy correlators. We emphasize that while this e↵ect
arises from quantum interference, we have been unable to
prove a Bell-type inequality using only energy measure-
ments. It would be interesting to understand if Bell-type
inequalities can be proven in the collider context, even in
principle. Similar questions have also been considered in
the context of inflationary measurements [43].

We parametrize the squeezed limit symmetrically, us-
ing (✓S , ✓L, �) as shown in Fig. 1, to eliminate linear
power corrections in ✓S/✓L. The squeezed limit is charac-

terized by ✓S ⌧ ✓L, with � arbitrary, and the expansion
in this limit takes the form

d3⌃

d✓2Ld✓2Sd�
'

1

⇡

⇣↵s

4⇡

⌘2 Sq(0)
i (�)

✓2L✓2S
+ · · · , (2)

where the dots denote terms less singular in the squeezed
limit. Expanding the full result for the three-point cor-
relator in [21], we find for quark and gluon jets,

Sq(0)
q (�) = CFnfTF

✓
39 � 20 cos(2�)

225

◆
(3)

+ CFCA

✓
273 + 10 cos(2�)

225

◆
+ C2

F
16

5

= 10.54 + 0.1156nf + (0.1778 � 0.0593nf ) cos(2�),

Sq(0)
g (�) = CAnfTF

✓
126 � 20 cos(2�)

225

◆

+ C2
A

✓
882 + 10 cos(2�)

225

◆
+ CFnfTF

3

5

= (35.28 + 1.24nf ) + (0.4 � 0.133nf ) cos(2�) .

Here we see cos(2�) interference terms at leading twist,
which at this order are identical for quark and gluon jets,
since they arise only from an intermediate gluon, and
have opposite signs for g ! qq̄ (in blue) and g ! gg
(in red). Positivity of the cross section guarantees that
the cos(2�) terms are smaller than the constant terms,
analogous to the conformal collider bounds [9]. Due to
the singular structure of the squeezed limit, the all orders
resummation of these spin interference e↵ects is required
to describe the three-point correlator, as well as for limits
of higher-point correlators.

Despite their importance for observables relevant to jet
substructure, spin interference e↵ects are not included in
the standard parton shower simulations used to this point

Chen, Moult &  
Zhu, 2011.02492
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E(n̂1)E(n̂2)E(n̂3) =
1

(2⇡)2
2

✓2S

2

✓2L
~J

h
bC�S (2) � bC�S (3)

i 
↵s(✓LQ)

↵s(✓SQ)

� b�(0)(3)
�0

h
bC�L(3) � bC�L(4)

i 
↵s(Q)

↵s(✓LQ)

� b�(0)(4)
�0

~O[4](n̂1) + · · ·

(11)

where the azimuthal angle � in Eq. 2 is identified as
�S � �L, and the overall rotation of the jet can be in-
tegrated out since we consider unpolarized sources. The
dots denote higher twist and subleading logarithmic con-
tributions. Plugging in the explicit values for the anoma-
lous dimensions, Eq. 7, and expanding to leading order
in ↵s, we find that Eq. 11 exactly reproduces the fixed
order results in Eq. 3, providing a highly non-trivial test
of our OPE formulas.

We can also consider the squeezed limit of the three-
point correlator in N = 4 SYM [21]. Here, the evo-
lution matrix in Eq. 10, reduces to a scalar evolution
with a universal anomalous dimension [64], and �g̃g̃ = �gg
[9, 65], so Eq. 11 agrees with the prediction for the scal-
ing of the transverse spin-0 and spin-2 contributions from
[9]. However, we find that the leading twist spin corre-
lations vanish after summing over the multiplet, sinceP

[C�(3)]i,g̃ = 0, i = �, q, g. This agrees with the per-
turbative prediction of [21]. This is one manifestation of
the “classicality” of N = 4 SYM.

Numerical Results at the LHC.—Using Eq. 11, we
make numerical predictions for unpolarized quark and
gluon jets at the LHC. In Fig. 3 (a) and (b), we show the
squeezed limit of the three-point correlator, weighted by
✓2L✓2S , as a function of (�, ✓S) for fixed ✓L. Here we have
used Q = 1 TeV, ✓2L = 0.1 and ↵s(1TeV) = 0.087, as well
as the one-loop �-function. The ripples in the distribu-
tion are clearly visible, and illustrate the direct imprint
of quantum interference e↵ects in the detector. They are
modulated by the resummation in ✓S , which has a qual-
itatively di↵erent structure for quark and gluon jets, as
discussed in [19].

For the case of QCD with nf = 5 light flavors, the
interference e↵ects are at the few percent level due to
a cancellation of g ! qq̄ and g ! gg splittings. How-
ever, we believe that if measured using tracks, they are
on the boundary of what can be achieved (see e.g. [66]).
Furthermore, there are a number of ways to enhance the
interference signals, including using charge information
to identify the g ! qq splitting, or b-tagging to perform
the measurement. In Fig. 3 (c) and (d), we show predic-
tions using an idealized b-tagging on the squeezed pair,
which isolates the g ! bb contribution, and enhances the
modulation to an O(1) e↵ect. We leave a detailed phe-
nomenological study of the optimal strategy to future
work.

Conclusions.—In this Letter we have studied the three-
point energy correlator, hE(n̂1)E(n̂2)E(n̂3)i, at the LHC.

(a) (b)

(c) (d)

FIG. 3: The squeezed limit of the three-point cor-
relator for (a) quark and (b) gluon jets at the LHC.
Interference e↵ects are seen as the cos(2�) ripple mod-
ulated by resummation in ✓S . In (c), (d), we assume
an idealized b-tagger, as explained in the text, to en-

hance the e↵ect.

Our study is novel both phenomenologically, where we
have proposed to use squeezed limits of energy correlators
to probe quantum interference and transverse spin e↵ects
in jet substructure, as well as theoretically, where we have
developed the light-ray OPE in QCD, and showed that it
provides a transparent way of understanding the resum-
mation of spin interference e↵ects.

Our results for the E(n̂1)E(n̂2) and E(n̂1)O[J](n̂2)
OPEs in QCD allow the description of iterated squeezed
limits of n-point correlators and opens the door for these
observables to be used as precision probes of QCD at
the LHC. The measurement of these multi-point event
correlators in the deep non-perturbative regime is also
fascinating as they are sensitive to polarization e↵ects in
the non-perturbative fragmentation process.

There are numerous avenues for further theoretical de-
velopment of the light-ray OPE in QCD, including under-
standing the appearance of light-ray operators with non-
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where the azimuthal angle � in Eq. 2 is identified as
�S � �L, and the overall rotation of the jet can be in-
tegrated out since we consider unpolarized sources. The
dots denote higher twist and subleading logarithmic con-
tributions. Plugging in the explicit values for the anoma-
lous dimensions, Eq. 7, and expanding to leading order
in ↵s, we find that Eq. 11 exactly reproduces the fixed
order results in Eq. 3, providing a highly non-trivial test
of our OPE formulas.

We can also consider the squeezed limit of the three-
point correlator in N = 4 SYM [21]. Here, the evo-
lution matrix in Eq. 10, reduces to a scalar evolution
with a universal anomalous dimension [64], and �g̃g̃ = �gg
[9, 65], so Eq. 11 agrees with the prediction for the scal-
ing of the transverse spin-0 and spin-2 contributions from
[9]. However, we find that the leading twist spin corre-
lations vanish after summing over the multiplet, sinceP

[C�(3)]i,g̃ = 0, i = �, q, g. This agrees with the per-
turbative prediction of [21]. This is one manifestation of
the “classicality” of N = 4 SYM.

Numerical Results at the LHC.—Using Eq. 11, we
make numerical predictions for unpolarized quark and
gluon jets at the LHC. In Fig. 3 (a) and (b), we show the
squeezed limit of the three-point correlator, weighted by
✓2L✓2S , as a function of (�, ✓S) for fixed ✓L. Here we have
used Q = 1 TeV, ✓2L = 0.1 and ↵s(1TeV) = 0.087, as well
as the one-loop �-function. The ripples in the distribu-
tion are clearly visible, and illustrate the direct imprint
of quantum interference e↵ects in the detector. They are
modulated by the resummation in ✓S , which has a qual-
itatively di↵erent structure for quark and gluon jets, as
discussed in [19].

For the case of QCD with nf = 5 light flavors, the
interference e↵ects are at the few percent level due to
a cancellation of g ! qq̄ and g ! gg splittings. How-
ever, we believe that if measured using tracks, they are
on the boundary of what can be achieved (see e.g. [66]).
Furthermore, there are a number of ways to enhance the
interference signals, including using charge information
to identify the g ! qq splitting, or b-tagging to perform
the measurement. In Fig. 3 (c) and (d), we show predic-
tions using an idealized b-tagging on the squeezed pair,
which isolates the g ! bb contribution, and enhances the
modulation to an O(1) e↵ect. We leave a detailed phe-
nomenological study of the optimal strategy to future
work.

Conclusions.—In this Letter we have studied the three-
point energy correlator, hE(n̂1)E(n̂2)E(n̂3)i, at the LHC.
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FIG. 3: The squeezed limit of the three-point cor-
relator for (a) quark and (b) gluon jets at the LHC.
Interference e↵ects are seen as the cos(2�) ripple mod-
ulated by resummation in ✓S . In (c), (d), we assume
an idealized b-tagger, as explained in the text, to en-

hance the e↵ect.

Our study is novel both phenomenologically, where we
have proposed to use squeezed limits of energy correlators
to probe quantum interference and transverse spin e↵ects
in jet substructure, as well as theoretically, where we have
developed the light-ray OPE in QCD, and showed that it
provides a transparent way of understanding the resum-
mation of spin interference e↵ects.

Our results for the E(n̂1)E(n̂2) and E(n̂1)O[J](n̂2)
OPEs in QCD allow the description of iterated squeezed
limits of n-point correlators and opens the door for these
observables to be used as precision probes of QCD at
the LHC. The measurement of these multi-point event
correlators in the deep non-perturbative regime is also
fascinating as they are sensitive to polarization e↵ects in
the non-perturbative fragmentation process.

There are numerous avenues for further theoretical de-
velopment of the light-ray OPE in QCD, including under-
standing the appearance of light-ray operators with non-

https://arxiv.org/abs/2011.02492
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Colour: several talks this afternoon (Frixione, Plätzer, Scyboz)

➤ Leading colour is the default for dipole showers 

➤ General full colour is intrinsically quantum & expensive [quantum spin is cheap] 

➤ But: full colour is easy for final-state emissions when they are all well-separated in 
angle (angular ordering tells you whether to use  or ) 

➤ It’s harder when >2 emissions are at commensurate angles 

➤ It’s harder when you mix collinear ISR and large-angle soft radiation 
(Forshaw, Kyrieleis & Seymour, hep-ph/0604094) 

➤ Can one limit the situations where one needs the full quantum input? 

➤ Non-shower reference calculations provide important guidance / reference

CF CA

34

https://arxiv.org/abs/hep-ph/0604094
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Crucial non-shower calculations in 2020/21

➤ E.g. using method of “random walk 
of Wilson lines” 

➤ Intriguing results that large-  limits  
(or simple modifications of large- ) 
agree amazingly well with the full-
colour calculations 

➤ It would be interesting to understand 
why, because it might simply route 
to efficient systematic inclusion of 
higher order ( ) effects

Nc
Nc

1/N2
c

35

Hatta & Ueda, 2011.04154
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(a) (b)

FIG. 2. (a) Same as Fig. 1 except that here ✓in = ⇡/4; (b) Plots of the two terms in (15), both normalized to
unity at ⌧ = 0.

FIG. 3. 2 ! 2 parton scattering with momentum assignments (left) and the corresponding antenna structure
(right).

logarithms are parametrically of the same order, but their resummation has been done only in the large-
Nc approximation for dijet production at the LHC [22]. In this section, we perform, for the first time, the
leading-logarithmic resummation of non-global logarithms for 2 ! 2 scatterings at finite-Nc, taking Higgs
plus dijet production in pp collisions at the LHC as a concrete example. We however have to sacrifice the
super-leading logarithms which are relevant to the present problem since there are hard partons in both
the initial and final states. We leave this to future work.

A. qq ! qqH

Let us first consider the simplest channel qi(p1)qj(p2) ! qk(p3)ql(p4)H where i, j, k, l = 1, 2, 3 are color
indices. The outgoing quarks (or antiquarks) with momenta p3, p4 are back-to-back and detected as two
jets in the forward and backward directions, see Fig. 3. The radiation pattern is sensitive to how color
flows in the 2 ! 2 scattering. Following [36], we use the eikonal approximation ū(p3)�µ

u(p1) ⇡ 2pµ1 and

Gap survival prob. in H→ gg

https://arxiv.org/abs/2011.04154
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Crucial non-shower calculations in 2020/21

➤ super-leading logs are one place 
where simple modifications of 
leading-  results won’t be enough  

➤ because these terms have a log 
structure ( ) that is absent at 
leading-  (higher terms: ) 

➤ Becher, Neubert & Shao have a 
(relatively) simple algorithm to 
generate these terms to all orders 

➤ see also Nagy & Soper, 1908.11420 

Nc

αn
s L2n−3

Nc αn
s Ln

36

Becher, Neubert & Ding-Yu Shao, 2107.01212 
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FIG. 2. Super-leading logarithms in quark-quark scattering

summed up to four-loop (red), five-loop (blue) and infinite

order (black). The solid and dashed lines refer to the color

octet and singlet channel, respectively.

In Figure 2, we evaluate the partonic qq ! qq scatter-
ing cross sections for the octet and singlet channels. In
order to only show the e↵ect of SLLs, we plot the partial
sums

PN
n=1 �̂SLL

n for di↵erent values of N . This omits
the three-loop contribution from ��̂, but note that also
this term is due to complex phases not captured in con-
ventional parton showers, see e.g. [21]. Due to the high
power of ↵s, the SLLs are only significant if the loga-
rithms are sizeable, and their e↵ect is quite sensitive to
the choice of scale in ↵s(µ). In the plot we set µ = Q0.

So far we have discussed the case of 2 ! 2 scatter-
ing, but an analogous relation with H4 replaced by H2+l

holds for a (anti-)quark-initiated 2 ! l jet process with
l � 0. In particular, we find that SLLs also arise for
processes with less than two final-state jets, a fact that
has not been appreciated in the literature. For 2 ! 0
processes such as qq̄ ! V , where V = �, Z0, W± is a col-
orless boson, the sum over j in (18) is absent, and color
conservation implies that

Crn = ��̂B 29�r⇡2CF (4Nc)
n(2r � 2)(1 � �r0) J2 , (22)

which vanishes for n = 1. The SLLs therefore start at
5-loop order, one order higher than in the general case.
For 2 ! 1 scattering processes such as qq̄ ! V + jet, the
only term in the sum has j = 3, and one can use color
conservation to obtain

Crn = �̂B 210�r⇡2 (4Nc)
n�1 �

N2
c + 2r � 2

�
(1 � �r0) J2 .

(23)
These contributions start at four-loop order. In the liter-
ature [2, 7], it has been stated that SLLs only arise when
there are at least two colored partons in the final state,
but as we have shown the emission into the gap originat-
ing from � supplies the necessary additional parton for
the 2 ! 1 case. For 2 ! 0 scattering the second final-
state parton arises from a collinear emission in �c, which
explains why the e↵ect is delayed by one order.

In this Letter we have solved the outstanding open
problem of resumming SLLs for a large class of non-global
observables at hadron colliders, thereby accounting for
the leading logarithmic corrections to such processes for
the first time. Our RG-based approach provides a trans-
parent understanding of the underlying physics, and our
analytical results should be useful in the ongoing e↵ort to
generalize parton showers to finite Nc, see e.g. [22–25]. It
will be interesting to perform a detailed analysis of SLLs
for an observable such as the gap fraction, including the
full set of partonic channels and accounting for running-
coupling e↵ects. Our findings indicate that SLLs could
have an appreciable e↵ect on precision observables, in
particular in Higgs production, where higher-order e↵ects
are generally large. Indeed, we find that the perturba-
tive coe�cients in gluon-induced 2 ! 0 processes are an
order of magnitude larger than in the quark case studied
here [20].
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Beyond NLL
➤ One question is how to build wisdom already obtained (e.g. Li & Skands, 1611.00013; 

Dulat, Höche & Prestel, 1805.03757 + earlier works) into showers that have NLL 
accuracy.  

➤ NNLL will be considerably more complicated than NLL: calculations to test individual 
limits will be especially crucial, e.g. 

➤ soft-drop calculations (e.g. Frye et al, 1603.09338; Kardos et al, 2002.00942 ;Anderle 
et al, 2007.10355) 

➤ non-global calculations (Banfi, Dreyer & Monni, 2104.06416) 

➤ others that don’t yet exist… 

➤ Are there more fundamental constraints on recoil (e.g. Caola, Ferrario Ravasio, 
Limatola, Melnikov & Nason, 2108.08897; and many sub-Eikonal papers)
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Conclusions
➤ Shower limitations appear to matter experimentally, and probably increasingly so as 

the LHC accumulates luminosity & exploits more event information, e.g. via 
machine learning 

➤ Extent to which there is a parton shower depends on number/colour of hard legs 
and value of hard scale: 5 TeV  has lots of shower, on shell  
relatively little 

➤ Classification of “NLL” shower accuracy a bit fuzzy, but the PanScales working 
definition places useful constraints — several showers are on the road to achieving / 
demonstrating NLL accuracy 

➤ Many open directions: NLL-pp, efficient+accurate subleading colour, contributions 
beyond NNLL

qq → qq Z → qq̄
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Q [GeV] ↵s(Q) pt,min [GeV] ⇠ = ↵sL2 � = ↵sL ⌧

91.2 0.1181 1.0 2.4 �0.53 0.27

91.2 0.1181 3.0 1.4 �0.40 0.18

91.2 0.1181 5.0 1.0 �0.34 0.14

1000 0.0886 1.0 4.2 �0.61 0.36

1000 0.0886 3.0 3.0 �0.51 0.26

1000 0.0886 5.0 2.5 �0.47 0.22

4000 0.0777 1.0 5.3 �0.64 0.40

4000 0.0777 3.0 4.0 �0.56 0.30

4000 0.0777 5.0 3.5 �0.52 0.26

20000 0.0680 1.0 6.7 �0.67 0.45

20000 0.0680 3.0 5.3 �0.60 0.34

20000 0.0680 5.0 4.7 �0.56 0.30

Table 1: Values of ⇠ = ↵sL2, � = ↵sL and ⌧ (defined in Eq. (7.10)) for various upper

(Q) and lower (pt,min) momentum scales. The coupling itself is in a 5-loop variable flavour

number scheme [45–48], while ⌧ is evaluated for 1-loop evolution with nf = 5.

For example to test NkDL accuracy we will study a quantity such as12

�VNkDL = lim
↵s!0

 
VPS(↵s,�

p
⇠/↵s)� VNkDL(↵s,�

p
⇠/↵s)

↵k/2
s

!
, (7.2)

where VNkDL is the known NkDL prediction from resummation and VPS is the result from

the parton shower. For a parton shower that is correct to NkDL accuracy, �VNkDL should

be zero. Values of ⇠ for di↵erent momentum ranges are shown in table 1. In practice we

will often use ⇠ = ↵sL2 = 5, which is towards the upper end of the phenomenologically

relevant combinations of ↵s and L accessible at the LHC. We perform such studies for

multiplicities (section 7.1) and event shapes (section 7.2.1).

For observables whose logarithmic prediction exponentiates, Eq. (1.1), we can study

lnV (↵s, L), taking the limit of ↵s ! 0 with fixed

� = ↵sL . (7.3)

To test NkLL accuracy we can examine

� lnVNkLL = lim
↵s!0

✓
lnVPS(↵s,�/↵s)� lnVNkLL(↵s,�/↵s)

↵k�1
s

◆
, (7.4)

12We could use a variant of (7.2) where the denominator is taken as VNkDL � VNk�1DL, except when

it vanishes. This has the advantage of providing a meaningful relative deviation at NkDL for situations

where �VNkDL does not converge to zero as ↵s ! 0, and it is the choice that we will adopt for some of our

multiplicity tests below.
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