

Image © OpenStreetMap contributors

Higgs 2021, Stony Brook, via Zoom, 18 October 2021

Gavin Salam Brookhaver Patchogue **Rudolf Peierls Centre for Theoretical Physics &** All Souls College, University of Oxford

European Research Council established by the European Commission

THE ROYAL SOCIETY

What are we trying to achieve? Higgs is the last particle of the SM. So the SM is complete, right?

Gavin P. Salam

$\mathscr{L}_{\text{SM}} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

Gavin P. Salam

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

 $\mathscr{L}_{\text{SM}} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

. . . .

 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!

Gavin P. Salam

. . . .

 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi -$

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!

Gavin P. Salam

Higgs potential (→ self-interaction).

Holds the SM together.

Unobserved

Why do Yukawa couplings matter to everyone? Because, within SM conjecture, they set quark and electron masses

Up quarks (mass ~ 2.2 MeV) are lighter than down quarks (mass ~ 4.7 MeV)

(up+up+down): 2.2 + 2.2 + 4.7 + ... = 938.3 MeVproton **neutron** (up+down+down): 2.2 + **4.7** + 4.7 + ... = **939.6** MeV

- So protons are lighter than neutrons,
- \rightarrow protons are stable,
 - giving us hydrogen

Why do Yukawa couplings matter to everyone? Because, within SM conjecture, they set quark and electron masses

Up quarks (mass ~ 2.2 MeV) are lighter than down quarks (mass ~ 4.7 MeV)

(up+up+down): 2.2 + 2.2 + 4.7 + ... = 938.3 MeVproton **neutron** (up+down+down): 2.2 + **4.7** + 4.7 + ... = **939.6** MeV

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = \frac{\hbar}{m_e}$$

Bohr radius

Gavin Salam

Why do Yukawa couplings matter to everyone? Because, within SM conjecture, they set quark and electron masses

Up quarks (mass ~ 2.2 MeV) are lighter than

We are establishing the existence of crucial new interactions We are establishing the existence of crucial new interactions We wouldn't consider QED established if we'd only tested it to O(10%) proton neutron (up+down+down): 2 2 Boh $m_e e^2$ $m_e C \alpha$ y_e

electron Yukawa determines size of all atoms & energy levels of all chemical reactions

Ellis, Madigan, Mimasu, Sanz, You, 2012.02779

Gavin P. Salam

Gavin P. Salam

. . . .

C_{tH}

 C_{H}

today's ATLAS and CMS total uncertainties (ratio to SM) are at the 8-9% level

> 5-6% stat. 3-6% syst. $\sim 5\%$ theo.

what is possible experimentally?

[in a quasi-ideal world]

Gavin P. Salam

$Z p_T distribution - a showcase for LHC precision$

 $\sigma_{\rm fid} = 736.2 \pm 0.2$ (stat) ± 6.4 (syst) ± 15.5 (lumi) pb

Gavin P. Salam

Normalised distribution's statistical and systematic errors well below 1% all the way to p_T ~ 200 GeV

Largest normalisation err is luminosity then lepton ID

Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS

Table 4: Summary of contributions to the relative systematic uncertainty in σ_{vis} (in %) at $\sqrt{s} = 13$ TeV in 2015 and 2016. The systematic uncertainty is divided into groups affecting the description of the vdM profile and the bunch population product measurement (normalization), and the measurement of the rate in physics running conditions (integration). The fourth column indicates whether the sources of uncertainty are correlated between the two calibrations at $\sqrt{s} = 13$ TeV.

Source	2015 [%]	2016 [%]	Corr
Normalization u	uncertainty		
Bunch population	-		
Ghost and satellite charge	0.1	0.1	Yes
Beam current normalization	0.2	0.2	Yes
Beam position monitoring			
Orbit drift	0.2	0.1	No
Residual differences	0.8	0.5	Yes
Beam overlap description			
Beam-beam effects	0.5	0.5	Yes
Length scale calibration	0.2	0.3	Yes
Transverse factorizability	0.5	0.5	Yes
Result consistency			
Other variations in $\sigma_{\rm vis}$	0.6	0.3	No
Integration ur	certainty		
<i>Out-of-time pileup corrections</i>	-		
Type 1 corrections	0.3	0.3	Yes
Type 2 corrections	0.1	0.3	Yes
Detector performance			
Cross-detector stability	0.6	0.5	No
Linearity	0.5	0.3	Yes
Data acquisition			
CMS deadtime	0.5	< 0.1	No
Total normalization uncertainty	1.3	1.0	—
Total integration uncertainty	1.0	0.7	
Total uncertainty	1.6	1.2	
		the second second	

Luminosity: the systematic common to all measurements

- ► has hovered around 2% for many years (except LHCb)
- CMS has recently shown that they can get it down to 1.2%
- ► a major achievement, because it matters across the spectrum of precision LHC results

the master formula

 $\sigma = \sum dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \,\hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$ i,j J

Gavin P. Salam

Higgs 2021

m _H	Cross Section
(GeV)	(pb)
125.00	4.858E+01

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$$

TH Gaussian

%

Gavin P. Salam

Alex Huss's talk tomorrow (including a conceptual surprise)

±PDF ±α_s % %

Higgs 2021

	HXSWG YR 4 gg
m _H	Cross Section
(Gev)	
125.00	4.858E+01

$J \rightarrow H$ uncertainties

 $\sigma = \sum dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$

Higgs 2021

Comparing modern PDF sets

gg-lumi, ratio to PDF4LHC15 @ $m_{\rm H}$

PDF4LHC15	1.0000	\pm	0.0184
CT18	0.9914	<u>+</u>	0.0180
MSHT20	0.9930	\pm	0.0108
NNPDF40	0.9986	\pm	0.0058

Amazing that MSHT20 & NNPDF40 are reaching %-level precision

Differences include

- methodology (replicas & NN fits, tolerance factors, etc.)
- data inputs
- treatment of charm

At this level, QED effects probably no longer optional

Removing DIS data (and associated worries about sizeable Λ^2/Q^2 corrections)

Reassuring indications that results are not (substantially) affected by Λ^2/Q^2 corrections from low- Q^2 DIS part of fit

Removing LHC data

- LHC data appears to be dominant in constraining the gluon
- ➤ One clear question is how to interpret gg-lumi uncertainties ≤ 1 % when all input cross sections @ hadron colliders have larger theory uncertainties.

	HXSWG YR 4 gg
m _H	Cross Section
(GeV)	(pb)
125.00	4.858E+01

 $\sigma = \sum dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$

Higgs 2021

The strong coupling HXS PI **ALPHA** latt

Impact of ± 0.0010 on $\sigma_{gg \rightarrow H}$ is $\pm 2.1\%$ (NNPDF40+ihixs) Until we get FCC-ee Z hadronic width measurement, I don't see any way forward that isn't (step scaling) lattice-based

Lattice determinations of the strong coupling 2101.04762 Luigi Del Debbio^a, Alberto Ramos^{b,1}

SWG YR4	0.1180 ± 0.0015
DG 2019	0.1179 ± 0.0010
tice (step scaling)	0.1185 ± 0.0008

August 2019

hrust [SCET]	0.1135 ± 0.0011
rameter [SCET]	0.1123 ± 0.0015
tice (step scaling)	0.1185 ± 0.0008
DG 2019	0.1179 ± 0.0010
SWG YR4	0.1180 ± 0.0015

Aside from EW fit and ALPHA lattice, most determinations depend, in some way or other, on measurements that are uncomfortably close / sensitive to non-perturbative physics

Luisoni, Monni & GPS, <u>2012.00622</u>

Gavin P. Salam

- ► measurement essentially looks at rate of 3rd jet emission in $e^+e^- \rightarrow q\bar{q}$
- > 0.1123 ± 0.0015 ↔ assumption about
 the structure of Λ/Q corrections, based
 on the 2-jet limit

Luisoni, Monni & GPS, <u>2012.00622</u>

Gavin P. Salam

- > measurement essentially looks at rate of 3rd jet emission in $e^+e^- \rightarrow q\bar{q}$
- ► $0.1123 \pm 0.0015 \Leftrightarrow$ assumption about the structure of Λ/Q corrections, based on the 2-jet limit
- Other bands show different
 interpolations between 2-jet and newly
 calculated symmetric-3-jet limit

Luisoni, Monni & GPS, 2012.00622 Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, 2108.08897 Gavin P. Salam

- measurement essentially looks at rate of 3rd jet emission in $e^+e^- \rightarrow q\bar{q}$
- ► $0.1123 \pm 0.0015 \iff assumption about$ the structure of Λ/Q corrections, based on the 2-jet limit
- Other bands show different interpolations between 2-jet and newly calculated symmetric-3-jet limit
- One of these is favoured by anew approach to calculating Λ/Q across full 2–3 jet region

Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, <u>2108.08897</u>

Gavin P. Salam

> measurement essentially looks at rate of 3r liet emission in $e^+e^- \rightarrow q\bar{q}$

> ± 0.0015 ↔ assumption about ture of Λ/Q corrections, based 2-jet limit

Other bands show different interpolations between 2-jet and newly calculated symmetric-3-jet limit

One of these is favoured by anew
 approach to calculating Λ/Q across full
 2–3 jet region

the non-perturbative part

 $\sigma = \sum dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \,\hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$ i,j J

Gavin P. Salam

What is value of p in $(\Lambda/Q)^p$?

- \blacktriangleright LEP event-shape (C-parameter, thrust) fit troubles came about because p = 1 $\Lambda \sim 0.5 \,\text{GeV} \rightarrow (\Lambda/20 \,\text{GeV}) \sim 2.5 \,\%$
- > Jet physics at LHC is dirty because p = 1 (hadronisation & MPI)
- Hadron-collider inclusive and rapidity-differential Drell-Yan cross sections are believed to have p = 2 (Higgs hopefully also), so leptonic / photonic decays should be clean, aside from isolation. $\Lambda \sim 0.5 \,\text{GeV} \rightarrow (\Lambda/125 \,\text{GeV})^2 \sim 0.002 \,\%$ [Beneke & Braun, hep-ph/9506452; Dasgupta, hep-ph/9911391]

 \blacktriangleright But at LHC, we're also interested in Z, W and Higgs production with non-zero p_T Nobody knew if we have $(\Lambda/p_T)^p$ with p = 1 (a disaster) or p = 2 (all is fine)

What is value of p in $(\Lambda/Q)^p$?

Ferraro Ravasio, Limatola & Nason, 2011.14114 + analytic demonstration in Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, <u>2108.08897</u> Gavin P. Salam Higgs 2021

- ► Flatness in plot for $\lambda \rightarrow 0$ indicates **absence of** p = 1 (linear) contribution
- arguably the most important result of the year, because it lays foundations for precision physics at non-zero p_T

)

_

beyond the fixed-order formula

parton shower Monte Carlos

Gavin P. Salam

Higgs 2021

ATLAS VH: <u>2008.02508</u>,

0 0		
Source of une	certainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	l uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.007
Leptons		0.010
-	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up		0.001
Luminosity		0.013
Theoretical a	and modelling uncer	rtainties
Signal		0.038
Backgrounds		0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \mathrm{jets}$		0.058
$\hookrightarrow t ar t$		0.035
\hookrightarrow Single top	o quark	0.027
\hookrightarrow Diboson		0.032
$\hookrightarrow \text{Multijet}$		0.009
MC statistica	al	0.092

ATLAS VH: <u>2008.02508</u>,

Source of un	certainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	l uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\mathrm{T}}^{\mathrm{mss}}$		0.007
Leptons		0.010
	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up	•	0.001
Luminosity		0.013
Theoretical a	and modelling uncer	rtainties
Signal		0.038
Backgrounds	;	0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$		0.058
$\mapsto t ar t$		0.035
\hookrightarrow Single top	o quark	0.027
\hookrightarrow Diboson		0.032
$\hookrightarrow \operatorname{Multijet}$		0.009
MC statistic	al	0.092

ATLAS VH: 2008.02508,

Source of u	ncertainty	Avg. impact	
Total		0.372	
Statistical		0.283	
Systematic		0.240	
Experiment	al uncertainties		Daulaura Di
Small- R jet	8	0.038	For large-R J
Large- R jet	S	0.133	described in
$E_{\mathrm{T}}^{\mathrm{mass}}$		0.007	
Leptons		0.010	
	b-jets	0.016	
b-tagging	c-jets	0.011	
	light-flavour jets	0.008	
	extrapolation	0.004	
$\operatorname{Pile-up}$		0.001	
Luminosity		0.013	
Theoretical	and modelling unce	rtainties	
Signal		0.038	
Background	s	0.100	
$\hookrightarrow Z + ext{jets}$	5	0.048	
$\hookrightarrow W + \text{jet}$	s	0.058	
$\hookrightarrow t ar t$		0.035	
\hookrightarrow Single to	op quark	0.027	
\hookrightarrow Diboson		0.032	
\hookrightarrow Multijet		0.009	
MC statisti	cal	0.092	

ts, the uncertainties in the energy and mass scales are [...] as 1]

ATLAS VH: 2008.02508,

Source of un	lcertainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	al uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\mathrm{T}}^{\mathrm{mass}}$		0.007
Leptons		0.010
	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
$\operatorname{Pile-up}$		0.001
Luminosity		0.013
Theoretical	and modelling unce	$\operatorname{rtainties}$
Signal		0.038
Backgrounds	5	0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$;	0.058
$\hookrightarrow t ar t$		0.035
\hookrightarrow Single to	p quark	0.027
\hookrightarrow Diboson		0.032
\hookrightarrow Multijet		0.009
MC statistic	al	0.092

ts, the uncertainties in the energy and mass scales are [...] as 11

ATLAS VH: 2008.02508,

Source of un	lcertainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	al uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\mathrm{T}}^{\mathrm{mass}}$		0.007
Leptons		0.010
	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
$\operatorname{Pile-up}$		0.001
Luminosity		0.013
Theoretical	and modelling unce	$\operatorname{rtainties}$
Signal		0.038
Backgrounds	5	0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$;	0.058
$\hookrightarrow t ar t$		0.035
\hookrightarrow Single to	p quark	0.027
\hookrightarrow Diboson		0.032
\hookrightarrow Multijet		0.009
MC statistic	al	0.092

ts, the uncertainties in the energy and mass scales are [...] as 1

But imperfections matter: e.g. for jet energy calibration (affects ~1500 papers)

Largest uncertainty source is poor understanding of

Resummation @N3LL, but parton showers only LL? Now evolving to NLL

Deductor $k_t \theta$ (" Λ ") ordered

Recoil ⊥: local +: local -: global

Tests analytical /numerical for thrust

FHP

 k_t ordered

Recoil L: global +: local -: global

Tests analytical for thrust & multiplicity

Nagy & Soper <u>2011.04777</u> (+past decade) Forshaw, Holguin & Plätzer 2003.06400

Gavin P. Salam

See talks by Siegert & Plätzer

PanLocal $k_t \sqrt{\theta}$ ordered

Recoil ⊥: local +: local -: local PanGlobal $k_t \text{ or } k_t \sqrt{\theta} \text{ ordered}$

> Recoil L: global +: local -: local

Tests numerical for many observables

Tests numerical for many observables

Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez <u>2002.11114</u> Hamilton, Medves, GPS, Scyboz, Soyez, <u>2011.10054</u> Karlberg, GPS, Scyboz, Verheyen, <u>2103.16526</u>

Gavin P. Salam

.

future colliders

Higgs 2021

Will e+e- colliders make precision easy?

Table 1.1. Relative statistical uncertainty on $\sigma_{HZ} \times BR(H \to XX)$ and $\sigma_{\nu\bar{\nu}H} \times BR(H \to XX)$, as expected from the FCC-ee data, obtained from a fast simulation of the CLD detector and consolidated with extrapolations from full simulations of similar linear-collider detectors (SiD and CLIC).

$\sqrt{s} \; (\text{GeV})$	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}$ H	HZ	$\nu \overline{\iota}$
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b \bar{b}$	± 0.3	± 3.1	± 0.5	±
	12.2		± 6.5	F
$\mathrm{H} \rightarrow \mathrm{gg}$	± 1.9		± 3.5	±
$H \rightarrow W^+ W^-$	± 1.2		± 2.6	\pm
$H \rightarrow ZZ$	± 4.4		± 12	F
$H \rightarrow \tau \tau$	± 0.9		± 1.8	
$ m H ightarrow \gamma \gamma$	± 9.0		± 18	F
$H \to \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		<0.6	

Notes. All numbers indicate 68% CL intervals, except for the 95% CL sensitivity in the last line. The accuracies expected with $5 ab^{-1}$ at 240 GeV are given in the middle column, and those expected with 1.5 ab^{-1} at $\sqrt{s} = 365 \text{ GeV}$ are displayed in the last column.

γΗ	
0.9	
-10	
-10	
4.5	
3.0	
10	
± 8	
22	

- > Up to $\sim \times 10$ reduction in uncertainties
- ► Interpreting 0.3% for $H \rightarrow bb$ will require substantial improvements in parametric inputs
- Much of the statistics involves hadronic modes — how well will we be able to exploit them?
- ► Agreement between e^+e^- and LHC will be powerful validation of hadron colliders as precision machines

conclusions

Gavin P. Salam

.

Conclusions

- statistics of the next 15 years.
- -> technically immensely challenging, and making remarkable progress
- force us to address conceptually complicated questions, e.g.
 - year!

> Across much of Higgs physics, theory / MC uncertainties are among the dominant systematic uncertainties — addressing them will be key to benefitting from $\times 20$

Perturbative calculations are making amazing strides (cf. Alex Huss's talk tomorrow)

> Other aspects (parameters, PDFs, parton showers, non-perturbative contributions)

non-perturbative corrections, with remarkable progress (& good news) this past

