# Jets through the LHC era (a personal view)

# Gavin Salam

**Rudolf Peierls Centre for Theoretical Physics** & All Souls College, Oxford

# **<u>5th KEK-PH</u>**, Jet Physics **30 November 2021**





UNIVERSITY OF









# The context of this talk: LHC physics (colour-coded by directly-probed energy scales)

**Standard-model** physics (QCD & electroweak)

100 MeV – 4 TeV

#### direct new-particle searches

100 GeV - 8 TeV

5th KEK-PH on Jet Physics, November 2021

Gavin Salam

#### top-quark physics

#### 170 GeV - O(TeV)

#### **Higgs physics**

125 GeV - 500 GeV

#### flavour physics (bottom & some charm)

#### 1 – 5 GeV

heavy-ion physics

#### 100 MeV - 500 GeV









# The context of this talk: LHC physics (colour-coded by directly-probed energy scales)

**Standard-model** physics (QCD & electroweak)

100 MeV - 4 TeV

#### direct new-particle searches

100 GeV - 8 TeV

5th KEK-PH on Jet Physics, November 2021

Gavin Salam

#### top-quark physics

#### **170 GeV – O(TeV)**

#### **Higgs physics**

125 GeV - 500 GeV

#### flavour physics (bottom & some charm)

heavy-ion physics

100 MeV - 500 GeV









# The context of this talk: LHC physics (colour-coded by directly-probed energy scales)

**Standard-model** physics (QCD & electroweak)

100 MeV - 4 TeV

#### direct new-particle searches

100 GeV - 8 TeV

Gavin Salam



- Key high-energy physics goals (my view)
- 1. Establish the structure of the Higgs sector of the SM
- 2. Search for signs of physics beyond the SM, direct (incl. dark matter candidates, SUSY, etc.) and indirect
- 3. Measure SM parameters, proton structure (PDFs), establish theory-data comparison methods, etc.









# $\mathscr{L}_{\text{SM}} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

Gavin Salam

5th KEK-PH on Jet Physics, November 2021

. . . .



# Gauge interactions, structurally like those in QED, QCD, EW, studied for many decades (but now with a scalar)

Gavin Salam

# $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$



 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$ 

#### Gauge interactions, structurally like those in QED, QCD, EW, studied for many decades (but now with a scalar)

Gavin Salam

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!



 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi -$ 

#### Gauge interactions, structurally like those in QED, QCD, EW, studied for many decades (but now with a scalar)

Gavin Salam

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!

5th KEK-PH on Jet Physics, November 2021

Higgs potential  $\rightarrow$ self-interaction ("sixth?" force between scalars). Holds the SM

together.

Unobserved





# **Broadband searches** (here an example with 704 event classes, >36000 bins)



Gavin Salam

#### Just one illustration out of many searches at the LHC





Gavin Salam

5th KEK-PH on Jet Physics, November 2021

| year | lumi (fb <sup>-1</sup> ) |       |
|------|--------------------------|-------|
| 2020 | 140                      |       |
| 2025 | 450                      | (× 3  |
| 2030 | 1200                     | (× 8  |
| 2037 | 3000                     | (× 20 |

95% of collisions still to be delivered





# UNDERLYING **THEORY**

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{N} \mathcal{V} \end{aligned}$ +  $\chi_i \, \Upsilon_{ij} \, \chi_j \phi + h.c$ +  $|D_{\mu} \phi|^2 - V(\phi)$ 

# **EXPERIMENTAL** DATA

# how do you make quantitative connection?





# UNDERLYING THEORY

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{B} \mathcal{F} \end{aligned}$ +  $\mathcal{Y}_{ij}\mathcal{Y}_{j}\phi$ +h.c +  $|\mathcal{D}_{m}\phi|^{2} - V(\phi)$ 

through a chain of experimental and theoretical links

[in particular Quantum Chromodynamics (QCD)]

# **EXPERIMENTAL** DATA

how do you make quantitative connection?











Event evolution spans 7 orders of magnitude in space-time









Event evolution spans 7 orders of magnitude in space-time



### Jet finging projects nigh-aim into to low number of almensions in a robust, reproducible way



### **Projection to jets should be resilient to QCD effects**

5th KEK-PH on Jet Physics, November 2021

**Gavin Salam** 





10

step back ~15 years

11

# pre-LHC hadron-collider jet algorithms (cone algorithms) were infrared unsafe



infrared unsafety = strong sensitivity to lowmomentum perturbations of event structure

 $\rightarrow$  uncancelled  $\infty$  in perturbative QCD calculations

| iss cones at | Last meaningful order |
|--------------|-----------------------|
| NNLO         | NLO                   |
| NNLO         | NLO                   |
| NLO          | LO                    |
| NLO          | LO                    |
| LO           | none                  |









# yet we were on the cusp of a revolution in precision QCD (NNLO) calculations

VBF total, Bolzoni, Maltoni, Moch, Zaro WH diff., Ferrera, Grazzini, Tramontano W/Z total, H total, Harlander, Kilgore  $\gamma$ , Catani et al. H total, Anastasiou, Melnikov Hj (partial), Boughezal et al. H total, Ravindran, Smith, van Neerven ttbar total, Czakon, Fiedler, Mitov WH total, Brein, Djouadi, Harlander Z-γ, Grazzini, Kallweit, Rathlev, Torre jj (partial), Currie, Gehrmann-De Ridder, Glover, Pires H diff., Anastasiou, Melnikov, Petriello ZZ, Cascioli it et al. H diff., Anastasiou, Melnikov, Petriello ZH diff., Ferrera, Grazzini, Tramontano W diff., Melnikov, Petriello WW, Gehrmann et al. W/Z diff., Melnikov, Petriello ttbar diff., Czakon, Fiedler, Mitov <sup>-</sup> Ζ-γ, W-γ, Grazzini, Kallweit, Rathlev H diff., Catani, Grazzini Hj, Boughezal et al. Catani et 🗖 /W/Z diff / Wj, Boughezal, Focke, Liu, Petriello VBF diff.. Cacciari et al Gehrmann-De Ridder et al. & X Grazzini, Kallweit, Rathlev Caola, Melnikov, Schulze Boughezal et al. NH diff., ZH diff., Campbell, Ellis, Williams Campbell, Ellis, Li, Williams WZ, Grazzini, Kallweit, Rathlev, Wiesemann ptz, Gehrmann-De Ridder et al. WW, Grazzini et al. MCFM at NNLO, Boughezal et al. single top, Berger, Gao, C.-Yuan, Zhu <sup>•</sup>HH, de Florian et al. p<sub>tH</sub>, Chen et al. ptz, Gehrmann-De Ridder et al. Currie, Glover, Pires yX, Campbell, Ellis, Williams Campbell, Ellis, Williams VH, H->bb, Ferrera, Somogyi, Tramontano single top, Berger, Gao, Zhu HHZ, Li, Li, Wang 2008 2012 2014 2016 2018 2020 2004 2006 2010 DIS jj, Žlebčík et al. VH, H->bb, Caola, Luisoni, Melnikov, Roentsch <sup>•</sup>p<sub>tW</sub>, Gehrmann-De Ridder et al. WBF diff., Cruz-Martinez, Gehrmann, Glover, Huss Wj, Zj, Gehrmann-De Ridder et al. ttbar total, Catani et al. γj, Chen et al. H->bbj, Mondini, Williams ttbar diff., Catani et al.

# many of these calculations would have been meaningless if

LHC had used IR unsafe jet algorithms 2002

**Gavin Salam** 





Catani, Dokshitzer, Seymour & Webber '93 Ellis & Soper '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

#### Marunouchi, Tokyo (c. 2009)







Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Ellis

1. for all particle pairs, *i*, *j*, find smallest o  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

|                           | p <sub>t</sub> /GeV | Marunouchi, Tokyo (c. 2009)<br>dmin is dij = 1.25989 |
|---------------------------|---------------------|------------------------------------------------------|
|                           | 60 -                |                                                      |
| Webber '93<br>& Soper '93 | 50                  |                                                      |
|                           | 40 -                |                                                      |
|                           | 30                  |                                                      |
|                           | 20 -                |                                                      |
| 1                         | 10                  |                                                      |
|                           | () -                | ) 1 2 3                                              |
|                           |                     |                                                      |









Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Ellis a

1. for all particle pairs, *i*, *j*, find smallest o  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

|                           | p <sub>t</sub> /GeV | <i>Marunouchi, Tokyo (c. 2009)</i><br>dmin is dij = 1.75968 |
|---------------------------|---------------------|-------------------------------------------------------------|
|                           | 60 -                |                                                             |
| Webber '93<br>& Soper '93 | 50                  |                                                             |
|                           | 40 •                |                                                             |
|                           | 30                  |                                                             |
|                           | 20                  |                                                             |
| 1                         | 10                  |                                                             |
|                           | 0 •                 | ) 1 2 3 4                                                   |
|                           |                     |                                                             |









Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iR}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Ellis &

1. for all particle pairs, *i*, *j*, find smallest o  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

|                           | p <sub>t</sub> /GeV | <i>Marunouchi, Tokyo (c. 2009)</i><br>dmin is dij = 20.1583 |
|---------------------------|---------------------|-------------------------------------------------------------|
|                           | 60 -                |                                                             |
| Webber '93<br>& Soper '93 | -                   |                                                             |
| of                        | 50 -                |                                                             |
|                           | 10                  |                                                             |
|                           | 40 -                |                                                             |
|                           | 30 -                |                                                             |
|                           | -                   |                                                             |
|                           | 20 -                |                                                             |
| l                         | 10                  |                                                             |
|                           | 0                   |                                                             |
|                           |                     |                                                             |









Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iR}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Ellis &

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

|                           | p <sub>t</sub> /GeV | Marunouchi, Tokyo (c. 2009)<br>dmin is dij = 24.4196 |
|---------------------------|---------------------|------------------------------------------------------|
|                           | 60                  |                                                      |
| Webber '93<br>& Soper '93 | -                   |                                                      |
| of                        | 50 -                |                                                      |
|                           | -                   |                                                      |
|                           | 40 -                |                                                      |
|                           |                     |                                                      |
|                           | 30 -                |                                                      |
|                           |                     |                                                      |
|                           | 20 -                |                                                      |
|                           | 10                  |                                                      |
|                           | 0 -                 |                                                      |
|                           | $\mathbf{C}$        | ) 1 2 3 4                                            |









Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iR}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Ellis &

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

|                           | p <sub>t</sub> /GeV | M<br>dmin | arun<br>is ( | <i>ouchi,</i><br>dij = | <b>Toky</b><br>27.7 | o (c. 20<br>1275 | 009) |
|---------------------------|---------------------|-----------|--------------|------------------------|---------------------|------------------|------|
|                           | 60 -                |           |              |                        |                     |                  |      |
| Webber '93<br>& Soper '93 | -                   |           |              |                        |                     |                  |      |
| of                        | 50 -                |           |              |                        |                     |                  |      |
|                           | 40                  |           |              |                        |                     |                  |      |
|                           | 30                  |           |              |                        |                     |                  |      |
|                           | 20 -                |           |              |                        |                     |                  |      |
|                           | 10                  |           |              |                        |                     |                  |      |
|                           | 0 -                 |           | 1            | 2                      |                     | 3                |      |









Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iR}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93 Ellis & Soper '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & W Ellis &

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum

|                              | p <sub>t</sub> /GeV | Ma<br>dmin | <i>irun</i><br>is | dij = | <i>Toky</i><br>400 | <i>o (c. 2</i><br>. 407 | 009) |
|------------------------------|---------------------|------------|-------------------|-------|--------------------|-------------------------|------|
|                              | 60 -                |            |                   |       |                    |                         |      |
| 7ebber '93<br>Soper '93<br>E | 50                  |            |                   |       |                    |                         |      |
|                              | 40                  |            |                   |       |                    |                         |      |
|                              | 30                  |            |                   |       |                    |                         |      |
|                              | 20 -                |            |                   |       |                    |                         |      |
|                              | 10                  |            |                   |       |                    |                         |      |
|                              | U •<br>(            | )          | 1                 | 2     |                    | 3                       | 4    |










Catani, Dokshitzer, Seymour & Webber '93 Ellis & Soper '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93 Ellis & Soper '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93 Ellis & Soper '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum





Catani, Dokshitzer, Seymour & Webber '93 Ellis & Soper '93

1. for all particle pairs, *i*, *j*, find smallest of  $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$  $d_{iB} = p_{ti}^2$ 

2. if 
$$d_{ij}$$
 recombine particles into one

3. if  $d_{iB}$  declare *i* to be a jet

#### Accept all jets above some some threshold transverse momentum











#### advance #1: computational speed for IR safe "sequential recombination" jet algorithms



Gavin Salam

5th KEK-PH on Jet Physics, November 2021

factor of  $\sim 1000$  speedup, using the "FastJet lemma"

Exploits underlying geometric information to speed clustering from  $N^3$ up to to  $N \ln N$ 

> Cacciari & GPS hep-ph/0512210









#### Gavin Salam

# $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

#### $-\frac{\mathbf{I}}{\max(p_{ti}^2, p_{tj}^2)}\frac{\Delta R_{ij}^2}{R^2}, \quad \langle$ $d_{ij}$ . $d_{iB} =$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

#### $-\frac{\mathbf{I}}{\max(p_{ti}^2, p_{tj}^2)}\frac{\Delta R_{ij}^2}{R^2}, \quad \langle$ $d_{ij}$ . $d_{iB} =$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

#### $-\frac{\mathbf{I}}{\max(p_{ti}^2, p_{tj}^2)}\frac{\Delta R_{ij}^2}{R^2}, \quad \langle$ $d_{ij}$ . $d_{iB} =$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

# $= \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$ $d_{ij}$ .

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

# $= \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$ $d_{ij}$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

#### $-\frac{\mathbf{I}}{\max(p_{ti}^2, p_{tj}^2)}\frac{\Delta R_{ij}^2}{R^2}, \quad \mathbf{C}$ $d_{ij}$ . $d_{iB} =$

#### Clustering grows around hard cores Gives circular jets









#### Gavin Salam

#### $-\frac{\mathbf{L}}{\max(p_{ti}^2, p_{tj}^2)}\frac{\Delta R_{ij}^2}{R^2}, \quad \mathbf{C}$ $d_{ij}$ . $d_{iB} =$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









#### Gavin Salam



# $= \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$ $d_{ij}$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









#### Gavin Salam

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









#### Gavin Salam

# $= \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$ $d_{ij}$ -

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









#### Gavin Salam

# $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

# $= \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$ $d_{ij}$ -

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_t^2}$$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

#### Clustering grows around hard cores Gives circular jets









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

# $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$

#### Clustering grows around hard cores Gives circular jets









#### Gavin Salam

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_t^2}$$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_t^2}$$

#### Clustering grows around hard cores Gives circular jets









#### Gavin Salam

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}}$$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189









Gavin Salam

5th KEK-PH on Jet Physics, November 2021

# $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$

#### Clustering grows around hard cores Gives circular jets









#### Gavin Salam

# $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} =$

#### Clustering grows around hard cores Gives circular jets

Cacciari, GPS & Soyez 0802.1189








































































































































































































anti-k<sub>t</sub> jet algorithm gives jet momentum with better linearity than k<sub>t</sub> algorithm (or many other jet algorithms)





# advance #3: removal of pileup (many simultaneous pp collisions)



**Gavin Salam** 

Nowadays many methods used (area-subtraction, particle/unified flow objects, PUPPI, soft-killer, ...) and machinelearning likely to play increasing role

Beyond scope of today's talk

19





those 3 advances are central to LHC physics today (e.g. anti-k<sub>t</sub> used in >70% of ATLAS & CMS publications)







# looking inside jets — basics

most jet finding based on correspondence 1 jet = 1 hard QCD parton (quark or gluon)

LHC forces us to go beyond that regime

5th KEK-PH on Jet Physics, November 2021



21



5th KEK-PH on Jet Physics, November 2021



## Jet substructure for boosted hadronc W/Z/H/t etc. decays

- with  $p_t \gg m$ , leading to collimated decays.





2 jets

[Figure by G. Soyez]

At LHC energies, EW-scale particles (W/Z/t...) are often produced

Hadronic decay products are thus often reconstructed into single jets.





23







## pure QCD event



### event with Higgs & Z boson decays





## pure QCD event



## event with Higgs & Z boson decays




Searches for new particles using cone and cluster jet algorithms: A Comparative study

Michael H. Seymour (Lund U.). Jun 1993. 23 pp. Published in Z.Phys. C62 (1994) 127-138 LU-TP-93-8 DOI: <u>10.1007/BF01559532</u>

> <u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>EndNote</u> **KEK scanned document**

Detailed record - Cited by 179 records 100+

"As a simple example (in fact the only way in which we use sub-jets in this paper), one could cluster the event until there is exactly one jet remaining-this is then the hardest jet. Then one could recluster only those particles that ended up in the hardest jet until there are exactly two jets-these are then the sub-jets corresponding to the hardest emission within the hardest jet."

 $R = \alpha R_{ii}, \gamma$ 



logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

#### "Then we recluster only those particles that ended up in the hardest jet, using a radius





#### WW scattering at the CERN LHC

J.M. Butterworth (University Coll. London), B.E. Cox, Jeffrey R. Forshaw (Manchester U.). Jan 2002. 29 pp. Published in Phys.Rev. D65 (2002) 096014 MC-TH-01-13, MAN-HEP-01-05, UCL-HEP-2001-06 DOI: 10.1103/PhysRevD.65.096014 e-Print: hep-ph/0201098 PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server; ADS Abstract Service

Detailed record - Cited by 299 records 250+

this analysis we develop a new technique. The extra pieces of information gained from the subjet decomposition are the y cut at which the subjets are defined and the fourvectors of the subjets. For a genuine W decay the expectation is that the scale at which the jet is resolved into subjets (i.e.  $yp_T^2$ ) will be  $\mathcal{O}(M_W^2)$ . The distribution of  $\log(p_T\sqrt{y})$ is shown in Figure 12(d). The scale of the splitting is indeed high in the signal and softer in the W+ jets background, where the hadronic W is in general a QCD jet rather than a genuine second W. A cut is applied at  $1.6 < \log(p_T \sqrt{y}) < 2.0$ . The effect of this cut is







## **Cambridge/Aachen algorithm**

#### Better jet clustering algorithms

Yuri L. Dokshitzer (Milan U.), G.D. Leder, S. Moretti, B.R. Webb (Cambridge U.). Jul 1997. 33 pp. Published in JHEP 9708 (1997) 001 CAVENDISH-HEP-97-06 DOI: 10.1088/1126-6708/1997/08/001 e-Print: hep-ph/9707323 | PDF <u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> EndNote

**ADS Abstract Service** 

Detailed record - Cited by 890 records 500+

ABSTRACT: We investigate modifications to the  $k_{\perp}$ -clustering jet algorithm which preserve the advantages of the original Durham algorithm while reducing non-perturbative corrections and providing better resolution of jet substructure. We find that a simple change in the sequence of clustering (combining smaller-angle pairs first), together with the 'freezing' of soft resolved jets, has beneficial effects.

|     | Hadronization corrections to jet cross-sections in dee             |
|-----|--------------------------------------------------------------------|
| ber | inelastic scattering                                               |
|     | M. Wobisch (Aachen, Tech. Hochsch.), T. Wengler (Heidelberg U.). A |
|     | 10 pp.                                                             |
|     | Published in In *Hamburg 1998/1999, Monte Carlo generators for     |
|     | physics* 270-279                                                   |
|     | PITHA-99-16                                                        |
|     | To be published in the proceedings of Conference: C98-04-27, p.270 |
| 1   | Proceedings                                                        |
| I   | e-Print: <u>hep-ph/9907280</u>   <u>PDF</u>                        |
|     | References   BibTeX   LaTeX(US)   LaTeX(EU)   Harvmac   End        |
|     | ADS Abstract Service                                               |
|     | Detailed record - Cited by 477 records 250+                        |









November 2021









#### **Gavin Salam**

## **SoftDrop:** action on signal (e.g. W/H/Z)

#### Soft Drop signal jet mass

### raw signal (plain jet mass)

Plots from Larkoski, Marzani, Soyez & Thaler arXiv:1402.2657

Gavin Salam

5th KEK-PH on Jet Physics, November 2021



NB:  $z_{cut}$  chosen to keep signal efficiency fixed at 35% for all  $\beta$ 



#### signal efficiency signal efficiency **SoftDrop:** action on background (quark/gluon-induced jets)



Plots from Larkoski, Marzani, Soyez & Thaler <u>arXiv:1402.2657</u> 5th KEK-PH on Jet Physics, November 2021 Gavin Salam

NB: z<sub>cut</sub> chosen to keep signal efficiency fixed at 35% for all β





## For comparison: trimming sculpts background much more

Trimming has three structures, induced by



- $\succ R_{\rm sub}$
- Sudakov peak
- ► In comparison: just one structure in mMDT/SoftDrop (*z*<sub>cut</sub>)





# SoftDrop $\beta = 0$ (=mMDT) has particularly simple QCD structure

most jet mass definitions involve double-logarithmic terms

$$(\alpha_s \ln^2 p_t/m)^n$$

> mMDT/SoftDrop( $\beta = 0$ ) has only single logarithms

 $(\alpha_{\rm s} \ln p_{\rm t}/m)^n$ 

► simplicity → most accurately calculated single-jet substructure observable



Kardos, Larkoski, Trocsanyi, <u>arXiv:2002.00942</u> (small z<sub>cut</sub>) other calc. approaches, see: Anderle et al, <u>arXiv:2007.10355</u>







# how much more info is there inside jets?

so far we examined use of hard 2-prong structure

5th KEK-PH on Jet Physics, November 2021

Gavin Salam





#### signal vs. background radiation patterns (first practical exploitation, Thaler & van Tilburg, N-subjettiness, <u>1011.2268</u>)



#### signal (H/W/Z $\rightarrow q\bar{q}$ )

Gavin Salam

5th KEK-PH on Jet Physics, November 2021



#### background ( $q \rightarrow qg$ )





- Project a jet onto a fixe each pixel intensity cor cell.
- Can be used as input f vision, such as deep co











# using full jet/event information for H/W/Z-boson tagging









QCD rejection with use of full jet substructure (2021 tools)100x better

First started to be exploited by Thaler & Van Tilburg with *"N-subjettiness"* (2010/11)







## can we trust machine learning? A question of confidence in the training...

# Unless you are highly confident in the information you have about the markets, you may be better off ignoring it altogether

- Harry Markowitz (1990 Nobel Prize in Economics) [via S Gukov]

5th KEK-PH on Jet Physics, November 2021

**Gavin Salam** 





## can we organise phase space to work for tagging and validation?



Gavin Salam

## decluster particles in C/A alg. at successively smaller angles: at each step record $\theta = \Delta R$ , $k_t$ Lund plane & declustering

#### simple and robust

B. Andersson, G. Gustafson, L. Lonnblad and Pettersson 1989 Dreyer, GPS & Soyez, <u>1807.04758</u> & 5th heavy-ion workshop @ CERN, <u>1808.03689</u>

5th KEK-PH on Jet Physics, November 2021

0.01



## Use as input to machine-learning

#### Dreyer & Qu, <u>arXiv:2012.08526</u>

- ML with Lund inputs gives signal/ background separation as good as, or better than other methods
- ► faster to train and to use
- these advantages probably come because the Lund diagram frames the physically relevant info in a way that makes it easier for machines to "learn"

|             | Number of parameters | Training time<br>[ms/sample/epoch] | Inference time<br>[ms/sample] |
|-------------|----------------------|------------------------------------|-------------------------------|
| LundNet     | 395k                 | 0.472                              | 0.117                         |
| ParticleNet | 369k                 | 3.488                              | 1.036                         |
| Lund+LSTM   | 67k                  | 0.424                              | 0.131                         |













## **Collinear spin correlations within jets**



Gavin Salam



# conclusions



## Conclusions

- > Jets are a crucial part of collider physics
- $\blacktriangleright$  Basic jet finding (1 quark = 1 jet) has simple, fast tools (anti-k<sub>t</sub>, FastJet) that continue to work well 10-15 years since their inception
- ► Incredible how much information is hiding in jet substructure every couple of years, people find that there is yet more info to be extracted
  - Lund declustering is one physical, powerful way of doing that (another is energy-flow polynomials)
- $\blacktriangleright$  Will undoubtedly play major role in next 15 years of LHC, and at future e+e-/pp/µµ colliders
- > The challenge is also on to make sure we can reliably predict the internal structure of jets and so make confident use of the associated information

#### Including broad programme to study new Higgs interactions and search for BSM physics



