## Jets through the LHC era (a personal view)

5th KEK-PH, Jet Physics viaZoom
30 November 2021

## Gavin Salam

Rudolf Peierls Centre for Theoretical Physics \& All Souls College, Oxford



## The context of this talk: LHC physics (colour-coded by directly-probed energy scales)

| Standard-model |
| :---: |
| physics |
| (QCD \& electroweak) |
| $100 \mathrm{MeV}-4 \mathrm{TeV}$ |

> top-quark physics

170 GeV - O(TeV)
Higgs physics

125 GeV - 500 GeV
direct new-particle searches

heavy-ion physics
$100 \mathrm{GeV}-8 \mathrm{TeV}$

## The context of this talk: LHC physics (colour-coded by directly-probed energy scales)

| Standard-model |
| :---: |
| physics |
| (QCD \& electroweak) |
| $100 \mathrm{MeV}-4$ TeV |

top-quark physics

170 GeV - O(TeV)
Higgs physics
$125 \mathrm{GeV}-500 \mathrm{GeV}$
direct new-particle searches
$100 \mathrm{GeV}-8 \mathrm{TeV}$

heavy-ion physics

100 MeV - 500 GeV

## The context of this talk: LHC physics (colour-coded by directly-probed energy scales)

## Standard-model physics (QCD \& electroweak)

```
100 MeV - 4 TeV
```

direct new-particle searches

## top-quark physics

170 GeV - O(TeV)

Higgs physics
$125 \mathrm{GeV}-500 \mathrm{GeV}$

Key high-energy physics goals (my view)

1. Establish the structure of the Higgs sector of the SM
2. Search for signs of physics beyond the SM, direct (incl. dark matter candidates, SUSY, etc.) and indirect
3. Measure SM parameters, proton structure (PDFs), establish theory-data comparison methods, etc.

## The Lagrangian and Higgs interactions: two out of three qualitatively new!

$$
\mathscr{L}_{\mathrm{SM}}=\cdots+\left|D_{\mu} \phi\right|^{2}+\psi_{i} y_{i j} \psi_{j} \phi-V(\phi)
$$

## The Lagrangian and Higgs interactions: two out of three qualitatively new!

$$
\mathscr{L}_{S M}=\cdots+\left|D_{\mu} \phi\right|^{2}+\psi_{i} y_{i j} \psi_{j} \phi-V(\phi)
$$

Gauge interactions, structurally like those in QED, QCD, EW, studied for many decades
(but now with a scalar)

## The Lagrangian and Higgs interactions: two out of three qualitatively new!

$$
\begin{gathered}
\mathscr{L}_{\mathrm{SM}}=\cdots+\left|D_{\mu} \boldsymbol{\phi}\right|^{2}+\psi_{i} y_{i j} \psi_{j} \phi-V(\boldsymbol{\phi}) \\
\begin{array}{c}
\text { Gauge interactions, structurally } \\
\text { like those in QED, QCD, EW, } \\
\text { studied for many decades } \\
\text { (but now with a scalar) }
\end{array} \\
\begin{array}{c}
\text { Yukawa interactions. } \\
\text { Responsible for fermion } \\
\text { masses, and induces "fifth } \\
\text { force" between fermions. } \\
\text { Direct study started only } \\
\text { in 2018! }
\end{array} \\
\hline
\end{gathered}
$$

## The Lagrangian and Higgs interactions: two out of three qualitatively new!



## Broadband searches (here an example with 704 event classes, $>36000$ bins)



ATLAS, arXiv:1807.07447

## $13 \mathrm{TeV}, 3.2 \mathrm{fb}^{-1}$

## General search

Just one illustration out of many searches at the LHC

## LHC luminosity v. time



## UNDERLYING THEORY

## EXPERIMENTAL DATA

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{q} F_{\mu \nu} F^{\mu \nu} \\
& +i F D \psi \\
& +x_{i} y_{i,} y_{s} \phi+h d \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

how do you make quantitative connection?


## UNDERLYING THEORY

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \neq D \psi \\
& +\psi_{i} y_{i j} \psi_{s} \phi+h_{L} \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

how do you make quantitative connection?

through a chain

of experimental
and theoretical links
[in particular Quantum Chromodynamics (QCD)]

$\qquad$ incoming beam particle
intermediate particle (quark or gluon)
final particle (hadron)

Event evolution spans 7 orders of magnitude in space-time

$\qquad$ incoming beam particle
intermediate particle (quark or gluon)
final particle (hadron)

Event evolution spans 7 orders of magnitude in space-time

Jet finding projects high-dim info to low number of dimensions in a robust, reproducible way


Jet $\downarrow$ Def $n$


Jet $\mid \operatorname{Def}^{n}$



$$
\text { Jet } \downarrow \text { Def }^{n}
$$

jet 1 jet 2

jet 1
jet 2


Projection to jets should be resilient to QCD effects

## step back ~15 years

## pre-LHC hadron-collider jet algorithms (cone algorithms) were infrared unsafe



infrared unsafety $=$
strong sensitivity to lowmomentum perturbations of event structure
$\rightarrow$ uncancelled $\infty$ in perturbative QCD calculations

| Observable | 1st miss cones at | Last meaningful order |
| :--- | :---: | :---: |
| Inclusive jet cross section | NNLO | NLO |
| $W / Z / H+1$ jet cross section | NNLO | NLO |
| 3 jet cross section | NLO | LO |
| $W / Z / H+2$ jet cross section | NLO | LO |
| jet masses in 3 jets, $W / Z / H+2$ jets | LO | none |

## yet we were on the cusp of a revolution in precision QCD (NNLO) calculations


many of these calculations would have been meaningless if LHC had used IR unsafe jet algorithms

VH, $\mathrm{H} \rightarrow \mathrm{>bb}$, Ferrera, Somogyi, Tramontano
single top, Berger, Gao, Zhu
HHZ, Li, Li, Wang
DIS jj, Žlebčík et al
$\mathrm{VH}, \mathrm{H}->\mathrm{bb}$, Caola, Luisoni, Melnikov, Roentsch $\mathrm{p}_{\mathrm{tw}}$, Gehrmann-De Ridder et al.

## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum

## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum

Marunouchi, Tokyo (c. 2009)


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## possible solution

## "sequential recombination" $k_{t}$ algorithm

1. for all particle pairs, $i, j$, find smallest of

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2}
$$

2. if $d_{i j}$ recombine particles into one
3. if $d_{i B}$ declare $i$ to be a jet

Accept all jets above some some threshold transverse momentum


## C. 2005



## advance \#1: computational speed for IR safe "sequential recombination" jet algorithms


factor of $\sim 1000$ speedup, using the "FastJet lemma"

Exploits underlying geometric information to speed clustering from $N^{3}$ up to to $N \ln N$

Cacciari \& GPS hep-ph/0512210

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$

## advance \#2: change clustering distances $\left(p_{t} \rightarrow 1 / p_{t}\right)$



Cacciari, GPS \& Soyez
$\underline{0802.1189}$


































## advance \#3: removal of pileup (many simultaneous pp collisions)



Nowadays many methods used (area-subtraction, particle/unified flow objects, PUPPI, soft-killer, ...) and machinelearning likely to play increasing role

Beyond scope of today's talk

those 3 advances are central to LHC physics today (e.g. anti- $\mathrm{k}_{\mathrm{t}}$ used in $>70 \%$ of ATLAS \& CMS publications)

## looking inside jets — basics

most jet finding based on correspondence
1 jet $=1$ hard QCD parton (quark or gluon)
LHC forces us to go beyond that regime

## high $p_{T}$ Higgs \& [SD] jet mass

We wouldn't trust electromagnetism if we'd only tested it at one length/ momentum scale.

New Higgs interactions need testing at both low and (here) high momenta.

high-pt
Z $\rightarrow$ bb
high-pT
$\mathrm{H} \rightarrow \mathrm{bb}$
(2.5 б)?
$137 \mathrm{fb}^{-1}(13 \mathrm{TeV})$


## Jet substructure for boosted hadronc W/Z/H/t etc. decays

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with $p_{t} \gg m$, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.


2 jets

pure QCD event

event with Higgs \& Z boson decays

pure QCD event

event with Higgs \& Z boson decays


Searches for new particles using cone and cluster jet algorithms: A Comparative study
Michael H. Seymour (Lund U.). Jun 1993. 23 pp.
Published in Z.Phys. C62 (1994) 127-138
LU-TP-93-8
DOI: 10.1007/BF01559532
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote KEK scanned document
Detailed record - Cited by 179 records $100+$
"As a simple example (in fact the only way in which we use sub-jets in this paper), one could cluster the event until there is exactly one jet remaining-this is then the hardest jet. Then one could recluster only those particles that ended up in the hardest jet until there are exactly two jets-these are then the sub-jets corresponding to the hardest emission within the hardest jet."

1993


Fig. 2. A hadronic $W$ decay, as seen at calorimeter level, a without, and $\mathbf{b}$ with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms
"Then we recluster only those particles that ended up in the hardest jet, using a radius $\mathrm{R}=\alpha \mathbf{R}_{\mathrm{ij}}, "$

## $W W$ scattering at the CERN LHC

J.M. Butterworth (University Coll. London), B.E. Cox, Jeffrey R. Forshaw (Manchester U.). Jan 2002. 29 pp.
Published in Phys.Rev. D65 (2002) 096014
MC-TH-01-13, MAN-HEP-01-05, UCL-HEP-2001-06
DOI: 10.1103/PhysRevD.65.096014
e-Print: hep-ph/0201098 | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server; ADS Abstract Service
Detailed record - Cited by 299 records $250+$

this analysis we develop a new technique. The extra pieces of information gained from the subjet decomposition are the $y$ cut at which the subjets are defined and the four-

$$
=1 / 2 \log \left(d_{12}\right)
$$ vectors of the subjets. For a genuine $W$ decay the expectation is that the scale at which the jet is resolved into subjets (i.e. $\left.y p_{T}^{2}\right)$ will be $\mathcal{O}\left(M_{W}^{2}\right)$. The distribution of $\log \left(p_{T} \sqrt{y}\right)$ is shown in Figure 12(d). The scale of the splitting is indeed high in the signal and softer in the $W+$ jets background, where the hadronic $W$ is in general a QCD jet rather than a genuine second $W$. A cut is applied at $1.6<\log \left(p_{T} \sqrt{y}\right)<2.0$. The effect of this cut is

## Better jet clustering algorithms

Yuri L. Dokshitzer (Milan U.), G.D. Leder, S. Moretti, B.R. Webber (Cambridge U.). Jul 1997. 33 pp.
Published in JHEP 9708 (1997) 001
CAVENDISH-HEP-97-06
DOI: 10.1088/1126-6708/1997/08/001
e-Print: hep-ph/9707323 | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service
Detailed record - Cited by 890 records $500+$

## Hadronization corrections to jet cross-sections in deep inelastic scattering

M. Wobisch (Aachen, Tech. Hochsch.), T. Wengler (Heidelberg U.). Apr 1998. 10 pp .
Published in In *Hamburg 1998/1999, Monte Carlo generators for HERA physics* 270-279
PITHA-99-16
To be published in the proceedings of Conference: $\mathbf{C 9 8 - 0 4 - 2 7 , ~ p . 2 7 0 - 2 7 9 ~}$ Proceedings
e-Print: hep-ph/9907280 I PDF

$$
\begin{aligned}
& \text { References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote } \\
& \underline{\text { ADS Abstract Service }}
\end{aligned}
$$

Detailed record - Cited by 477 records $2=0+$

Abstract: We investigate modifications to the $k_{\perp}$-clustering jet algorithm which preserve the advantages of the original Durham algorithm while reducing non-perturbative corrections and providing better resolution of jet substructure. We find that a simple change in the sequence of clustering (combining smaller-angle pairs first), together with the 'freezing' of soft resolved jets, has beneficial effects.

## the Cambridge / Aachen (C/A) jet algorithm

## Cambridge/Aachen

1. Identify pair of particles, i \& j, with smallest $\Delta R_{i j} \quad p_{t} / G e V$
2. If $\Delta \mathrm{R}_{\mathrm{ij}}<\mathrm{R}$ (jet radius parameter)
A. recombine i \& j into a single particle
B. loop back to step 1
3. Otherwise, stop the clustering

Dokshitzer, Leder, Moretti \& Webber '97
Wobisch E Wengler '98


## A sequence of jet substructure tools taggers

> 2008: Mass-Drop Tagger (C/A declustering with a $\mathrm{k}_{\mathrm{t}} / \mathrm{m}$ cut) [Butterworth, Davison, Rubin, GPS, arXiv:0802.2470]
> 2013: Soft Drop, $\beta=0$, aka modified mass-drop tagger (mMDT) [Dasgupta, Fregoso, Marzani, GPS, arXiv:1307.0007]

- 2014: Soft Drop, $\beta \neq 0$ [Larkoski, Marzani, Soyez, Thaler, arXiv:1402.2657]

1. Undo last clustering of $\mathrm{C} / \mathrm{A}$ jet into subjets 1,2
2. Stop if $z=\frac{\min \left(p_{t 1}, p_{t 2}\right)}{p_{t 1}+p_{t 2}}\left(\frac{\Delta R_{12}}{R}\right)^{\beta}>z_{\text {cut }}$
3. Else discard softer branch, repeat step 1 with harder branch


## SoftDrop: action on signal (e.g. W/H/Z)



NB: $z_{\text {cut }}$ chosen to keep signal efficiency fixed at $35 \%$ for all $\beta$
Plots from Larkoski, Marzani, Soyez \& Thaler arXiv:1402.2657

## SoftDrop: action on background (quark/gluon-induced jets)



[^0]
## For comparison: trimming sculpts background much more

> Trimming has three structures, induced by
$>z_{\text {cut }}$
$>R_{\text {sub }}$

- Sudakov peak
> In comparison: just one structure in mMDT/SoftDrop ( $z_{\text {cut }}$ )



## SoftDrop $\beta=0$ ( $\equiv \mathrm{mMDT}$ ) has particularly simple QCD structure

> most jet mass definitions involve double-logarithmic terms

$$
\left(\alpha_{s} \ln ^{2} p_{t} / m\right)^{n}
$$

> mMDT/SoftDrop $(\beta=0)$ has only single logarithms

$$
\left(\alpha_{s} \ln p_{t} / m\right)^{n}
$$

> simplicity $\rightarrow$ most accurately calculated single-jet substructure observable

Kardos, Larkoski, Trocsanyi, arXiv:2002.00942 (small $z_{\text {cut }}$ ) other calc. approaches, see: Anderle et al, arXiv:2007.10355

# how much more info is there inside jets? 

so far we examined use of hard 2-prong structure

## pp jet substructure field is full of activity

c. 2018
Jet Declustering

| Degree | Connected Multigraphs |
| :--- | :--- |


modified mass drop soft drop iterated soft drop recursive soft drop


$C_{n}, D_{n}, v e_{n}^{(\beta)}, M_{n}, N_{n}$, $U_{n}$, EFPs
classification without labels weak supervision

DNN, CNN, RNN, LSTM, etc

signal vs. background radiation patterns (first practical exploitation, Thaler \& van Tilburg, N-subjettiness, 1011.2268)

signal $(H / W / Z \rightarrow q \bar{q})$

background ( $\mathrm{q} \rightarrow \mathrm{qg}$ )

## Machine learning and jet/event structure

- Project a jet onto a fixed $n \times n$ pixel image in rapidity-azimuth, where each pixel intensity corresponds to the momentum of particles in that cell.
- Can be used as input for classification methods used in computer vision, such as deep convolutional neural networks.

(a) ParticleNet

Qu E Guskos,
arXiv:1902.08570

## using full jet/event information for H/W/Z-boson tagging

adapted from Dreyer $\mathcal{E}$ Qu $\underline{2012.08526}$ QCD rejection with just jet mass (SD/mMDT) i.e. 2008 tools $\mathcal{E}$ their 2013/14 descendants



[^1]
## using full jet/event information for H/W/Z-boson tagging

adapted from Dreyer $\mathcal{E}$ Qu $\underline{2012.08526}$
i.e. 2008 tools $\mathcal{E}$ their 2013/14 descendants


## QCD rejection

 with use of full jet substructure (2021 tools)
## 100x better

First started to be exploited by Thaler $\mathcal{E}$ Van Tilburg with "N-subjettiness" (2010/11)
can we trust machine learning? A question of confidence in the training...

Unless you are highly confident in the information you have about the markets, you may be better off ignoring it altogether

- Harry Markowitz (1990 Nobel Prize in Economics) [via S Gukov]
can we organise phase space to work for tagging and validation?



## Use as input to machine-learning

Dreyer \& Qu, arXiv:2012.08526
> ML with Lund inputs gives signal/ background separation as good as, or better than other methods

- faster to train and to use
> these advantages probably come because the Lund diagram frames the physically relevant info in a way that makes it easier for machines to "learn"

|  | Number of <br> parameters | Training time <br> $[\mathrm{ms} /$ sample/epoch $]$ | Inference time <br> [ms/sample] |
| :---: | :---: | :---: | :---: |
| LundNet | 395 k | 0.472 | 0.117 |
| ParticleNet | 369 k | 3.488 | 1.036 |
| Lund+LSTM | 67 k | 0.424 | 0.131 |

QCD rejection v. Top tagging efficiency


Same input used for ML can also be measured directly (validate / study QCD radn pattern)










Lund plane: measured \& calculated
> measurements by ATLAS \& ALICE
> Good agreement between ATLAS \& Lifson, GPS \& Soyez, arXiv:2007.06578
> powerful tests also of Monte Carlos

ALICE Preliminary $\mathrm{pp} \sqrt{\mathrm{s}}=13 \mathrm{TeV}$


$$
=
$$

## Collinear spin correlations within jets



Spin Space Double Slit


(Chen, Moult \& Zhu, 2011.02492)

[^2]
## conclusions

## Conclusions

> Jets are a crucial part of collider physics Including broad programme to study new Higgs interactions and search for BSM physics

- Basic jet finding ( 1 quark $=1$ jet) has simple, fast tools (anti-kt, FastJet) that continue to work well 10-15 years since their inception
> Incredible how much information is hiding in jet substructure - every couple of years, people find that there is yet more info to be extracted
> Lund declustering is one physical, powerful way of doing that (another is energy-flow polynomials)
- Will undoubtedly play major role in next 15 years of LHC, and at future $\mathrm{e}^{+} \mathrm{e}^{-} / \mathrm{pp} / \mu \mu$ colliders
- The challenge is also on to make sure we can reliably predict the internal structure of jets and so make confident use of the associated information


[^0]:    NB: $z_{\text {cut }}$ chosen to keep signal efficiency fixed at $35 \%$ for all $\beta$

[^1]:    5th KEK-PH on Jet Physics, November 2021

[^2]:    5th KEK-PH on Jet Physics, November 2021

