FCC-UK: UK opportunities and the FCC feasibility study, November 2021

○ FCC

Gavin Salam

THE ROYAL SOCIETY

UNIVERSITY OF OXFORD

FCC PHYSICS OVERVIEW

Recalling the basic numbers

Gavin Salam

FCC-ee (numbers of events are for 2 detectors)

FCC-hh: what do $20/30ab^{-1}$ @ 100 TeV buy you?

- \sim ~ ×5 in mass reach of new-physics searches relative to HL-LHC (fairly independently of the new physics scenario)
- > 100 \rightarrow 500 \times higher numbers of Higgs bosons, $t\bar{t}$ pairs, etc. than HL-LHC (much more at high-p_T & for high-mass pairs)

Table 1.1. Higgs production event rates for selected processes at 100 TeV (N_{100}) and statistical increase with respect to the statistics of the HL-LHC ($N_{100} = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1}$, $N_{14} = \sigma_{14 \,\mathrm{TeV}} \times 3 \,\mathrm{ab}^{-1}$).

	$gg \rightarrow H$	VBF	WH	ZH	ttH	HH
N_{100}	24×10^9	2.1×10^9	4.6×10^{8}	3.3×10^8	9.6×10^8	3.6×10^7
N_{100}/N_{14}	180	170	100	110	530	390

together with PbPb, ep and ePb options

	√s	L /IP (cm ⁻² s ⁻¹)	Int. L /IP(ab ⁻¹)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	230 x10 ³⁴ 28 8.5 1.5	75 5 2.5 0.8	2-4 experiments Total ~ 15 years of operation
pp FCC-hh	100 TeV	5 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	√s _{eN} = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

. . . .

Higgs physics Higgs is the last particle of the SM. So the SM is complete, right?

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

The Lagrangian and Higgs interactions: two out of three qualitatively new!

 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi -$

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

Gavin Salam

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!

FCC-UK: UK opportunities & the feasibility study, November 2021

Higgs potential → self-interaction ("sixth?" force between scalars).

Holds the SM together.

Unobserved

Plenty of other important open questions on the Higgs sector

- Is the Higgs the only (fundamental?) scalar field, or are there other Higgslike states (e.g. H[±], A⁰, H^{±±}, ..., EW-singlets,)?
 - Do all SM families get their mass from the **<u>same</u>** Higgs field?
 - Do $I_3 = I/2$ fermions (up-type quarks) get their mass from the <u>same</u> Higgs field as $I_3 = -1/2$ fermions (down-type quarks and charged leptons)?
 - Do Higgs couplings conserve flavour? $H \rightarrow \mu \tau$? $H \rightarrow e \tau$? $t \rightarrow Hc$?
- Is there a deep reason for the apparent metastability of the Higgs vacuum?
- Is there a relation among Higgs/EWSB, baryogenesis, Dark Matter, inflation?
- What happens at the EW phase transition (PT) during the Big Bang?
 - what's the order of the phase transition?
 - are the conditions realized to allow EW baryogenesis?

the Higgs discovery does not close the book, it opens a whole new chapter of exploration, based on precise measurements of its

Mangano @ Higgs 2021

properties, which require the LHC and a future generation of colliders 6

FCC as a Higgs factory

Higgs provides a very good reason why we need both e⁺e⁻ <u>AND</u> pp colliders

• FCC-ee measures g_{HZZ} to 0.2% (absolute, model-independent, standard candle) from σ_{ZH}

- $\Gamma_{\rm H}, g_{\rm Hbb}, g_{\rm Hcc}, g_{\rm H\tau\tau}, g_{\rm Hww}$ follow
- Standard candle fixes all HL-LHC / FCC-
- FCC-hh produces over 10¹⁰ Higgs bosons
 - (1st standard candle \rightarrow) $g_{H\mu\mu}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$,
- FCC-ee measures top EW couplings (e⁺e⁻
 - Another standard candle
- FCC-hh produces 10⁸ ttH and 2. 10⁷ HH p
 - $(2^{nd} \text{ standard candle} \rightarrow) g_{Htt} \text{ and } g_{HHH}$
- FCC-ee / FCC-hh complementarity is out Unreachable by high-energy lepton colliders

FCC-ee is also the most pragmatic, safest, and most effective way toward FCC-hh

Patrick Janot

	Collider	HL-LHC	$FCC-ee_{240\rightarrow 365}$	FCC-INT	
	Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30	
hh couplings	Years	10	3 + 1 + 4	25	
	$g_{ m HZZ}$ (%)	1.5	$0.18 \ / \ 0.17$	0.17/0.16	
5	$g_{ m HWW}$ (%)	1.7	$0.44 \ / \ 0.41$	0.20/0.19*	
Du	$g_{ m Hbb}~(\%)$	5.1	$0.69 \ / \ 0.64$	0.48/0.48	> e
, Br _{inv}	$g_{ m Hcc}~(\%)$	SM	1.3 / 1.3	0.96/0.96	
	$g_{ m Hgg}$ (%)	2.5	1.0 / 0.89	0.52/0.5	
$\rightarrow \tau \tau$	$g_{\mathrm{H} au au}$ (%)	1.9	$0.74 \ / \ 0.66$	0.49/0.46	
	$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9 / 3.9	0.43/0.43	
	$g_{ m H\gamma\gamma}~(\%)$	1.8	$3.9 \ / \ 1.2$	0.32/0.32	
apirc	$g_{ m HZ\gamma}~(\%)$	11.	- / 10.	0.71/0.7	
Jalis	$g_{ m Htt}~(\%)$	3.4	10. / 3.1	1.0/0.95	ρ
	(%)	50	44./33.	3	
	9HHH (70)	50.	27./24.	5	
	$\Gamma_{\rm H}$ (%)	SM	1.1	0.91	ee
	BR_{inv} (%)	1.9	0.19	0.024	pp
standing	BR_{EXO} (%)	SM(0.0)	1.1	1	ee
			* g _{HWW} includ	les also ep	

Engagement meeting 26 Nov 2021

Refs for the table: arXiv:1905.03764, arXiv:2004.03505

5

!e

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

. . . .

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

FCC will explore many operators \equiv many observables (incl. high-p_T @ FCC-hh)

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

Pattern of deviations is "fingerprint" of new physics

Illustration from ILC studies (slide taken from D. Jeans @ **ICHEP 2020)**

Testing SM V(φ) by measuring HH production

- Higgs self-interaction holds the SM together
- ► FCC-ee will also provide indirect constraints at @ ~20% level
- \blacktriangleright FCC-hh \rightarrow few % determination (needs accurate $t\bar{t}Z$ and Higgs couplings from FCC-ee)

				-	
		@68% CL	scenario I sc	nario II	scenario III
	\$	stat only	2.2	2.8	3.7
	o_{μ}	$\mathrm{stat} + \mathrm{syst}$	2.4	3.5	5.1
	$\delta_{\kappa_{\lambda}}$	stat only	3.0	4.1	5.6
		$\mathrm{stat} + \mathrm{syst}$	3.4	5.1	7.8
			(optimistic ~ LHC Run 2 perf)	(30 Ma	fb ⁻¹ @ 100 TeV, ngano, Ortona &
				Selva	aggi, 2004.03505)

FCC-hh 68%cl precision (%) on double-Higgs production

Gavin Salam

FCC-hh Simulation 원동 0.12 $-\kappa_{\lambda}=0$ $gg \rightarrow HH$ **–**|b $-\kappa_{\lambda}=1$ _ Powheg-V2 (NLO) 0.1 $-\kappa_{\lambda}=2$ $-\kappa_{\lambda}=3$ √s=100 TeV 0.08 0.06 nario III 0.04 3.7 0.02 5.15.67.8500 600 400 300 700 m_{hh} [GeV/c²]) 100 TeV, o, Ortona &

FCC-UK: UK opportunities & the feasibility study, November 2021

Testing SM V(φ) by measuring HH production

- ~20% level

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

Direct BSM searches

FCC-hh: ~×5 in reach wrt HL-LHC across many hundred search channels + some interesting specific targets

FCC-ee & FCC-eh: sensitivity to specific classes of models

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

Extension of SM with one extra scalar ("h₂", gauge singlet)

precision constraints on all models (with m_2 transition (needed for EW baryogenesis)

FCC-UK: UK opportunities & the feasibility study, November 2021

FCC-hh: strong reach for some models to explain $B \rightarrow K \ell \ell$ anomalies

Gavin Salam

FCC-ee, e.g. axion and heavy-neutral lepton searches

benefits from huge Z-pole luminosity (some models in these regions have potential to connect with dark matter, baryond asymmetry, neutrino masses, etc.)

Gavin Salam

Flavour physics

besides quark-flavour physics illstrated in next slides there's also a strong τ-physics programme (cf. <u>arXiv:2107.12832</u>)

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

15× more b-pairs at FCC-ee than at Belle II

2106.01259

Attribute All hadron species High boost Enormous production cross-section Negligible trigger losses Low backgrounds Initial energy constraint

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

FCC-ee

. . . .

h_d and h_s (BSM contributions to $B^0 - \bar{B}^0$ and $B^0_s - \bar{B}^0_s$ mixing)

FCC-UK: UK opportunities & the feasibility study, November 2021

Gavin Salam

in light of flavour anomalies: FCC-ee is unique place to study $B^0 \rightarrow K^* \tau \tau$

Gavin Salam

Z-pole, WW and ttbar FCC-ee

Gavin Salam

EW & top precision

Observable	present	FCC-ee	FCC-ee	Comment and	Observable	present	FCC-ee	FCC-ee	Comm
	value \pm error	Stat.	Syst.	leading exp. error		value $\pm \text{ error}$	Stat.	Syst.	leading ex
$m_{\rm Z} (\rm keV)$	91186700 ± 2200	4	100	From Z line shape scan	$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	au polarization asy
				Beam energy calibration					au decay
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan	au lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial al
				Beam energy calibration	$\tau \text{ mass (MeV)}$	1776.86 ± 0.12	0.004	0.04	momentu
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak	τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron sej
				Beam energy calibration	$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW thresh
$1/lpha_{ m QED}({ m m}_{ m Z}^2)(imes 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak					Beam energy cal
				QED&EW errors dominate	$\Gamma_{\rm W} ~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW thresh
$R_{\ell}^{Z} (\times 10^3)$	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons					Beam energy cal
				acceptance for leptons	$\alpha_{\rm s}({ m m}_{ m W}^2)(imes 10^4)$	1170 ± 420	3	small	fi
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from $R^{\mathbf{Z}}_{\ell}$ above	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to
$\sigma_{\rm had}^0 (\times 10^3) (\rm nb)$	41541 ± 37	0.1	4	peak hadronic cross section					in radiative Z
				luminosity measurement	$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From $t\bar{t}$ thresh
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections					QCD errors d
				Luminosity measurement	$\Gamma_{\rm top} \ ({\rm MeV/c}^2)$	1410 ± 190	45	small	From $t\bar{t}$ thresh
$R_b (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons					QCD errors d
				stat. extrapol. from SLD	$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From $t\overline{t}$ thresh
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole					QCD errors d
				from jet charge	ttZ couplings	$\pm 30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365$ G
1 4			-i		· · · · · · · · · · · · · · · · · · ·				

2106.13885

nent and xp. error ymmetry physics lignment um scale eparation nold scan libration nold scan libration from R_{ℓ}^{W} leptonic returns nold scan dominate nold scan lominate nold scan lominate GeV run

Gavin Salam

Gavin Salam

Two messages

- > with a rough estimate for systematics, FCC brings a big step forward (geom.avg. $= \times 18$, across $\gtrsim 20$ observables)
- still huge scope for thinking about how to improve systematics (gain of up to further \times 100 in some cases)
 - This is the fun part for us as physicists! and will call for joint efforts by experiment/theory/accelerator physicists

threshold scan for top mass November 2017 tt threshold - QQbar_Threshold NNNLO 0.9 ISR + FCCee Luminosity Spectrum – default - m_t^{PS} 171.5 GeV, Γ_t 1.37 GeV 8.0 m_t variations ± 0.2 GeV 0.7 Γ_{t} variations ± 0.15 GeV 0.6 0.5 0.4 0.3 simulated data points 20 fb⁻¹ / point 0.2

preliminary based on EPJ C73, 2530 (2013) 0.1 0 340 345 350 √s [GeV]

Gavin Salam

section [pb]

Cross

FCC-UK: UK opportunities & the feasibility study, November 2021

limits on top FCNF

Status of closure test after Z, W^+W^- and $t\bar{t}$ runs

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

strong interactions

Gavin Salam

FCC-ee: strong coupling, etc.

strong coupling from EW precision to per-mil accuracy

studies of colour reconnection in W-pair events

▶ jet rates, substructure, flavour, fragmentation

► etc.

FCC-eh: huge improvement partonic luminosities

parton-parton luminosities ($\sqrt{s} = 100 \text{ TeV}$)

Gavin Salam

FCC-UK: UK opportunities & the feasibility study, November 2021

PDFs from FCC-eh are potentially crucial for full exploitation of FCC-hh physics programme.

NB: at this level of precision, one may start worrying about non-perturbative contributions in PDF fits to moderate- Q^2 DIS data

FCC-hh PbPb collisions: top & W decays probe q/g-plasma across yoctosecond time-scales

Fig. S.6 Left: total delay time for the QGP energy-loss parameter $\hat{q} = 4 \text{ GeV}^2/\text{fm}$ as a function of the top transverse momentum (black dots) and its standard deviation (error bars). The average contribution of each component is shown as a coloured stack band. The dashed line

corresponds to a $\hat{q} = 1 \text{ GeV}^2/\text{fm}$. Right: reconstructed W boson mass, as a function of the top p_T . The upper axis refers to the average total time delay of the corresponding top p_T bin

Interplay of EW & Higgs with strong interaction

107.

.02686

2 gluon-tagged jet, 70% eff/jet light-quark mistag: 1%

BDT MVA result (removing some jet vars already used in g-uds discrimination)

For \mathscr{L}_{int} =10 ab⁻¹ $S/\sqrt{B} = 55/\sqrt{2500} \approx 1.1$ Significance ≈ 1.1

Progress needed: David d'Enterria (CERN) Today's best machine-learning, at particle level, gives ~ 1/4 the corresponding S/\sqrt{B} for (gluon/quark)² part of H discrimination (Dreyer, Soyez & Takacs prelim)

FCC-UK: UK opportunities & the feasibility study, November 2021

With $> 200,000 H \rightarrow WW$ events, can one do better than 1% on the measurement?

Many decay channels, each with specific features / difficulties

Z boson decay W boson decay	ee	$\mu\mu$	ττ	νν	qq	Liao
$WW^* \rightarrow evev$	88	88	88	525	1836	L
$WW^* \to \mu \nu \mu \nu$	87	87	87	517	1808	00
$WW^* \rightarrow e \nu \mu \nu$	175	175	175	1052	3644	2
$WW^* \to e \nu \tau \nu$	187	187	188	1116	3901	01
$WW^* \to \mu \nu \tau \nu$	186	186	186	1107	3872	
$WW^* \to \tau \nu \tau \nu$	99	99	99	593	2072	(8)
$WW^* \rightarrow evqq$	1111	1112	1114	6612	23112	C H
$WW^* \rightarrow \mu \nu q q$	1103	1104	1105	6562	22939	PC
$WW^* \to \tau \nu qq$	1181	1182	1183	7025	24558	
$WW^* \rightarrow qqqq$	3498	3502	3506	20808	72735	
			_			

resources

Gavin Salam

Resources: FCC CDR (<u>https://fcc-cdr.web.cern.ch/</u>) & EPJ+ <u>special issue</u>

EPJ+ special issue "A future Higgs and EW Factory: Challenges towards discovery"

Inti	roduction (2 essays)
2.1	Physics landscape after the Higgs discovery [1]
2.2	Building on the Shoulders of Giants [2]
Par fror	t I: The next big leap – New Accelerator technologies to reach the precisi ntier [3] (6 essays)
3.1	FCC-ee: the synthesis of a long history of e^+e^- circular colliders [4]
3.2	RF system challenges
3.3	How to increase the physics output per MW.h?
3.4	IR challenges and the Machine Detector Interface at FCC-ee [5]
3.5	The challenges of beam polarization and keV-scale center-of-mass energy calibration
3.6	The challenge of monochromatization [7]
Par	t II: Physics Opportunities and challenges towards discovery [8] (15 essay
4.1	Overview: new physics opportunities create new challenges [9]
4.2	Higgs and top challenges at FCC-ee [10]
4.3	Z line shape challenges : ppm and keV measurements [11]
4.4	Heavy quark challenges at FCC-ee [12]
4.5	The tau challenges at FCC-ee [13]
4.6	Hunting for rare processes and long lived particles at FCC-ee [14]
4.7	The W mass and width challenge at FCC-ee [15]
4.8	A special Higgs challenge: Measuring the electron Yukawa coupling via s-channe
	Higgs production [16]
4.9	A special Higgs challenge: Measuring the mass and cross section with ultimate precision [17]
Patr	rick Janot Engager
	Intr 2.1 2.2 Par from 3.1 3.2 3.3 3.4 3.5 3.6 Par 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Gavin Salam

	3		All 34 references in this Overleaf do	cument:
	3		https://www.overleaf.com/read/xcss	xavhtrat
	3	l		
he precision		4.10 From phys	sics benchmarks to detector requirements [18] .	
	4	4.11 Calorimetr	ry at FCC-ee [19]	
	4	4.12 Tracking a	and vertex detectors at FCC-ee [20]	ctor requirem
· · · · <u>·</u> · · ·	4	4.13 Muon dete	ection at FCC-ee [21]	ossible soluti
)l, √s · ·	4	4.14 Challenges	s for FCC-ee Luminosity Monitor Design [22]	
	4	4.15 Particle Id	entification at FCC-ee [23]	
calibration [6]	4			
	4 ⁵	Part III: Theo	oretical challenges at the precision frontier	[24] (7 essays)
		5.1 Overall per	rspective and introduction	
(15 essays)	4	5.2 Theory cha	allenges for electroweak and Higgs calculations [2]	5]
	5	5.3 Theory cha	allenges for QCD calculations	·····Theory ·
	5	5.4 New Physi	ics at the FCC-ee: Indirect discovery potential [26	^{5]} challende
	5	5.5 Direct disc	covery of new light states [27]	chancinge
es to mai	ſ¢h	5.6 Theoretica	al challenges for flavour physics [28]	
al precisi	ơn	5.7 Challenges	for tau physics at the TeraZ $[29]$	
	6 6	Part IV: Softy	ware Dev. & Computational challenges (4 e	essays)
	7	61 Key4hep, a	a framework for future HEP experiments and its	use in FCC
a s-channel	_ (6.2 Offline con	nputing resources and approaches for sustainable	computing
	7	6.3 Accelerator	r-related codes and interplay with FCCSW	
th ultimate	7	6.4 Online con	nputing challenges: detector & readout requireme	ents [30]
	(Software	and computi
Engagemer	nt mee	eting	c	nallenges

Benchmark studies (<u>https://www.overleaf.com/read/dyjpdszrqxhz</u>)

- 1. Towards an ultimate measurement of $R_{\ell} = \frac{\sigma(Z \rightarrow \text{hadrons})}{\sigma(Z \rightarrow \text{leptons})}$
- 2. Towards an ultimate measurement of the Z total width $\Gamma_{\rm Z}$
- 3. Towards an ultimate measurement of the Z peak cross section
- 4. Direct determination of $\sin^2 \theta_{\text{eff}}^{\ell}$ and of $\alpha_{\text{QED}}(m_Z^2)$ from muon pair asymmetries
- 5. Determination of the QCD coupling constant $\alpha_{\rm S}(m_{\rm Z}^2)$
- 6. Tau Physics, Lepton Universality, and Lepton Flavour Violation
- 7. Tau exclusive branching ratios and polarization observables
- 8. Z-pole Electroweak observables with heavy quarks
- 9. Long lived particle searches
- 10. Measurement of the W mass
- 11. Measurement of the Higgs boson coupling to the c quark
- 12. Measurement of the ZH production cross section

More detailed letters of interest and contacts specific to each case study (if not already indicated below) will be available shortly. Meanwhile, Alain Blondel, Patrick Janot, and Markus Klute are the main entry points to these case studies. The complete document is available at https://www.overleaf.com/read/dyjpdszrqxhz and will be regularly updated with more case studies and contacts.

- 13. Measurement of the Higgs boson mass Part I
- 14. Measurement of the Higgs boson mass Part II
- 15. Inferring the total Higgs boson decay width Part I
- 16. Inferring the total Higgs boson decay width Part II
 - 17. Determination of the HZ γ effective coupling
 - 18. Electron Yukawa via s-channel $e^+e^- \rightarrow H$ production at the Higgs pole
 - 19. Measurement of top properties at threshold and above
 - 20. Search for FCNC in the top sector
 - 21. Theory Needs for FCC-ee
 - 22. Beyond MFV: constraints on RH charged currents and on dipole operators
 - 23. Construction of CP-odd observables to probe CP-violating Higgs couplings
 - 24. Combined fit of Higgs and top data

FCC feasibility study: Physics-Experiments-Detector (PED), many places to get involved!

Gavin Salam

5th FCC PHYSICS BOORKSHOP LIVERPOOL 07 - 11 February 2022

In-person meeting for the first limited number of registering attendees

www.cern.ch/FCCPhysics2022

CCIS - The Future Circular Col his NFRADEV Research and Irn eceives funding from the Europe insmessork Programme under gr

Wernoo

Ellesmer

Gavin Salam

Abstract submission deadline: **8 December**

Registration deadline for in-person participation: **16 January**

https://cern.ch/FCCPhysics2022

bility study, November 2021

conclusions

Gavin Salam

.

Conclusions

- > no single talk can do justice to the wealth of physics possible across the FCC programme FCC programme combines strong ambition with likely feasibility
- - > an effective $\times 3 5$ in direct energy reach (like Tevatron \rightarrow LHC)
 - > at least an order of magnitude in precision (potentially much more) and associated indirect energy reach
- > no-lose theorem: directly establishing Higgs self-interaction (it holds the SM together) beyond that we don't know what will come out, but it is win/win:
 - Setablish SM simplicity up to unprecedented scales (a win for Occam's razor and firm) foundations for future theories and experiments)
 - > or gain clues to problems such as scale-hierarchy/DM/flavour/etc

Tasks ahead

Consolidate & communicate the physics case

- > as part of building a broad FCC community
- > & explaining why it is exciting to those outside the FCC
- Design experimental setup & develop theoretical foundations
 - ensure accelerator design / interface is optimal for physics case
 - A develop tools for detailed, robust studies (detector simulations, software, theory)
 - carry out representative physics analyses (make firmer/better statements about performance, establish detector requirements)
 - use them to benchmark detector concepts (up to 4 for FCC-ee), evaluate computing requirements, etc.

backup

Gavin Salam

arXiv:1906.02693, FCC-ee: Your questions answered

e⁺e⁻ collisions

√s Observable	mz	2m _W	HZ max. 240-250 GeV	2M _{top} 340-380 GeV	500 GeV	1.5 TeV	3 TeV	28 TeV 37 TeV 48 TeV	100 TeV	Leading Physics Questions
Precision EW (Z, W, top)	Transverse polarization	Transverse polarization		m _{top} (m _W , α _S)						Existence of more SN Interacting particle
QCD (α _S) QED (α _{QED})	5×10 ¹² Z	3×10 ⁸ W	1o⁵ H→gg							Fundamental constar and tests of QED/QC
Model-independent Higgs couplings	ee √s	H = m _H	1.2×10 ⁶ HZ an at two e	d 75k WW→H energies					<1% precision (*)	Test Higgs nature
Higgs rare decays									<1% precision (*)	Portal to new physic
Higgs invisible decays									10 ⁻⁴ BR sensitivity	Portal to dark matte
Higgs self-coupling			3 to 5 0 from lo to Higgs cre	oop corrections oss sections					3% (HH prod) (*)	Key to EWSB
Flavours (b, τ)	5×10 ¹² Z									Portal to new physic Test of symmetries
RH v's, Feebly interacting particles	5×10 ¹² Z								10 ¹¹ W	Direct NP discovery At low couplings
Direct search at high scales					M _x <250GeV Small ∆M	M _x <750GeV Small ∆M	M _x <1.5TeV Small∆M		Up to 40 TeV	Direct NP discovery At high mass
Precision EW at high energy							Y		<i>W, Z</i>	Indirect Sensitivity t Nearby new physic
Quark-gluon plasma Physics w/ injectors										QCD at origins

Green = Unique to FCC; Blue = Best with FCC; (*) = if FCC-hh is combined with FCC-ee; Pink = Best with other colliders;

pp collisions

л
'I -
ts
D
c
5
r
S
J

Table 3.3: Values for 1σ sensitivity on the S and T parameters. In all cases the value shown is after combination with HL-LHC. For ILC and CLIC the projections are shown with and without dedicated running at the Z-pole. All other oblique parameters are set to zero. The intrinsic theory uncertainty is also set to zero.

	Current	HL-LHC	ILC_{250}		CEPC	FCC-ee	CLIC ₃₈₀				
				$(\& ILC_{91})$				(& CLIC ₉₁)			
S	0.13	0.053	0.012	0.009	0.0068	0.0038	0.032	0.011			
T	0.08	0.041	0.014	0.013	0.0072	0.0022	0.023	0.012			
	FCC-ee brings × 14-18										

It's not inconceivable that the top mass could be sufficiently mis-measured at hadron colliders that the SM-universe is stable all the way to the Planck scale

condition in terms of the pole top mass. We can express the stability condition of eq. (64) as $M_t < (171.53 \pm 0.15 \pm 0.23_{\alpha_3} \pm 0.15_{M_h}) \,\text{GeV} = (171.53 \pm 0.42) \,\text{GeV}.$ (66)

arXiv:1307.3536

mass reach at FCC-hh v. LHC (<u>http://collider-reach.web.cern.ch/</u>)

FCC-UK: UK opportunities & the feasibility study, November 2021

1910.11775 Fig 3.5: numbers of bosons (FCC-ee W breakdown looks wrong)

Gavin Salam

current gluon/quark discrimination (Dreyer, Soyez, Takacs prelim, particle-level)

• • • •

