HIGGS PHYSICS IN THE PRECISION ERA Fermilab joint experimental and theoretical physics seminar 4 February 2022

Gavin Salam Rudolf Peierls Centre for Theoretical Physics & All Souls College, University of Oxford

European Research Council Established by the European Commission

THE ROYAL SOCIETY

What are we trying to achieve?

the Higgs boson is the last particle of the SM. So the SM is complete, right?

Fermilab "wine and cheese" seminar, Feb. 2022

Gavin P. Salam

$\mathscr{L}_{\text{SM}} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

 $\mathscr{L}_{\text{SM}} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

. . . .

 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

. . . .

 $\mathscr{L}_{SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi -$

Gauge interactions, structurally like those in QED, QCD, EW, **studied for many decades** (but now with a scalar)

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018!

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

Higgs potential (→ self-interaction).

Holds the SM together.

Unobserved

Why do Yukawa couplings matter to everyone? Because, within SM conjecture, they set quark and electron masses

Up quarks (mass ~ 2.2 MeV) are lighter than down quarks (mass ~ 4.7 MeV)

(up+up+down): 2.2 + 2.2 + 4.7 + ... = 938.3 MeVproton **neutron** (up+down+down): 2.2 + **4.7** + 4.7 + ... = **939.6** MeV

cf. Quigg & Shrock, arXiv:0901.3958

Gavin Salam

- So protons are lighter than neutrons,
- \rightarrow protons are stable,
 - giving us hydrogen

Why do Yukawa couplings matter to everyone? Because, within SM conjecture, they set quark and electron masses

Up quarks (mass ~ 2.2 MeV) are lighter than down quarks (mass ~ 4.7 MeV)

(up+up+down): 2.2 + 2.2 + 4.7 + ... = 938.3 MeVproton **neutron** (up+down+down): 2.2 + **4.7** + 4.7 + ... = **939.6** MeV

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = \frac{\hbar}{m_e}$$

Bohr radius

cf. Quigg & Shrock, <u>arXiv:0901.3958</u>

Gavin Salam

Why do Yukawa couplings matter to everyone? Because, within SM conjecture, they set quark and electron masses

Up quarks (mass ~ 2.2 MeV) are lighter than

cf. Quigg & Shrock, <u>arXiv:0901.3958</u>

Gavin Salam

 $M_{\rho}C\alpha$ y_e

electron Yukawa determines size of all atoms & energy levels of all chemical reactions

Ellis, Madigan, Mimasu, Sanz, You, 2012.02779

Gavin P. Salam

2018 data 2020 data No STXS 📕 No Zjj

Gavin P. Salam

. . . .

Fermilab "wine and cheese" seminar, Feb. 2022

CtH

Gavin P. Salam

$H \rightarrow \gamma \gamma$, an indirect probe of the top Yukawa, HWW and contact ggH couplings

today's ATLAS and CMS total uncertainties (ratio to SM) are at the 8-9% level

> 5-7% stat. 3-7% syst. \sim 5% theo.

what is possible experimentally?

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

[in a quasi-ideal world]

$Z p_T distribution - a showcase for LHC precision$

 $\sigma_{\rm fid} = 736.2 \pm 0.2$ (stat) ± 6.4 (syst) ± 15.5 (lumi) pb

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

Normalised distribution's statistical and systematic errors well below 1% all the way to p_T ~ 200 GeV

Largest normalisation err is luminosity then lepton ID

Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS

Table 4: Summary of contributions to the relative systematic uncertainty in σ_{vis} (in %) at $\sqrt{s} = 13$ TeV in 2015 and 2016. The systematic uncertainty is divided into groups affecting the description of the vdM profile and the bunch population product measurement (normalization), and the measurement of the rate in physics running conditions (integration). The fourth column indicates whether the sources of uncertainty are correlated between the two calibrations at $\sqrt{s} = 13$ TeV.

Source	2015 [%]	2016 [%]	Corr
Normalization u	uncertainty		
Bunch population			
Ghost and satellite charge	0.1	0.1	Yes
Beam current normalization	0.2	0.2	Yes
Beam position monitoring			
Orbit drift	0.2	0.1	No
Residual differences	0.8	0.5	Yes
Beam overlap description			
Beam-beam effects	0.5	0.5	Yes
Length scale calibration	0.2	0.3	Yes
Transverse factorizability	0.5	0.5	Yes
Result consistency			
Other variations in $\sigma_{\rm vis}$	0.6	0.3	No
Integration un	certainty		
<i>Out-of-time pileup corrections</i>			
Type 1 corrections	0.3	0.3	Yes
Type 2 corrections	0.1	0.3	Yes
Detector performance			
Cross-detector stability	0.6	0.5	No
Linearity	0.5	0.3	Yes
Data acquisition			
CMS deadtime	0.5	< 0.1	No
Total normalization uncertainty	1.3	1.0	—
Total integration uncertainty	1.0	0.7	
Total uncertainty	1.6	1.2	
		The second second	

Luminosity: the systematic common to all measurements

- ► has hovered around 2% for many years (except LHCb)
- ► CMS has recently shown that they can get it down to 1.2%
- ► a major achievement, because it matters across the spectrum of precision LHC results

the master formula

 $\sigma = \sum \left[dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \,\hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p \right] \right]$ *l*,*]*

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

	HXSWG YR 4 gg
m _H	Cross Section
(GeV)	(dd)
125.00	4.858E+01

 $\sigma = \sum dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$

Fermilab "wine and cheese" seminar, Feb. 2022

Comparing modern PDF sets

NB: PDF4LHC21 will use CT18/MSHT20/NNPDF31

Gavin P. Salam

gg-lumi, ratio to PDF4LHC15 @ m_H

PDF4LHC15	1.0000	\pm	0.0184
CT18	0.9914	\pm	0.0180
MSHT20	0.9930	\pm	0.0108
NNPDF40	0.9986	\pm	0.0058

Amazing that MSHT20 & NNPDF40 are reaching %-level precision

Differences include

- methodology (replicas & NN fits, tolerance factors, etc.)
- data inputs
- treatment of charm

At this level, QED effects probably no longer optional

Removing DIS data (and associated worries about sizeable Λ^2/Q^2 corrections)

Reassuring indications that results are not (substantially) affected by Λ^2/Q^2 corrections from low- Q^2 DIS part of fit

Fermilab "wine and cheese" seminar, Feb. 2022

Gavin P. Salam

Removing LHC data

Gavin P. Salam

► LHC data appears to be dominant in constraining the gluon

One clear question is how to interpret gg-lumi uncertainties $\leq 1\%$ when all input cross sections at hadron colliders have larger theory uncertainties.

	HXSWG YR 4 gg
m _H	Cross Section
(GeV)	(pb)
125.00	4.858E+01

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

Impact of ± 0.0010 on $\sigma_{gg \rightarrow H}$ is $\pm 2.1\%$ (NNPDF40+ihixs) Until we get FCC-ee Z hadronic width measurement, I don't see any way forward that isn't (step scaling) lattice-based

Lattice determinations of the strong coupling 2101.04762 Luigi Del Debbio^a, Alberto Ramos^{b,1}

SWG YR4	0.1180 ± 0.0015
DG 2019	0.1179 ± 0.0010
tice (step scaling)	0.1185 ± 0.0008

hrust [SCET]	0.1135 ± 0.0011
arameter [SCET]	0.1123 ± 0.0015
tice (step scaling)	0.1185 ± 0.0008
DG 2019	0.1179 ± 0.0010
SWG YR4	0.1180 ± 0.0015

Aside from EW fit and ALPHA lattice, most determinations depend, in some way or other, on measurements that are uncomfortably close / sensitive to non-perturbative physics, cf. terms $(\Lambda/Q)^p$, where $\Lambda \sim \Lambda_{\rm OCD} \sim 1 \,{\rm GeV}$

Luisoni, Monni & GPS, 2012.00622

Gavin P. Salam

C-param fits with different assumptions for //Q correction (between 2 & 3-jet limits)

Luisoni, Monni & GPS, 2012.00622

Gavin P. Salam

- measurement essentially looks at rate of 3rd jet emission in $e^+e^- \rightarrow q\bar{q}$
- ► $0.1123 \pm 0.0015 \iff assumption about$ the structure of Λ/Q corrections, based on the 2-jet limit
 - Other patches show different interpolations between 2-jet and newly calculated symmetric-3-jet limit

C-param fits with different assumptions for A/Q correction (between 2 & 3-jet limits)

Luisoni, Monni & GPS, 2012.00622 Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, 2108.08897

Gavin P. Salam

- measurement essentially looks at rate of 3rd jet emission in $e^+e^- \rightarrow q\bar{q}$
- ► $0.1123 \pm 0.0015 \iff assumption about$ the structure of Λ/Q corrections, based on the 2-jet limit
- Other patches show different interpolations between 2-jet and newly calculated symmetric-3-jet limit
- One of these is favoured by a new approach to calculating Λ/Q across full 2–3 jet region

C-param fits with different assumptions for A/Q correction (between 2 & 3-jet limits)

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

ntially looks at rate of $^+e^- \rightarrow q\bar{q}$

 $s \leftrightarrow assumption about$ are of Λ/Q corrections, based

Other patches show different interpolations between 2-jet and newly calculated symmetric-3-jet limit

One of these is favoured by a new approach to calculating Λ/Q across full

the non-perturbative part at hadron colliders

 $\sigma = \sum dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2) \,\hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$ l, J

Gavin P. Salam

What is value of p in $(\Lambda/Q)^p$?

- \blacktriangleright LEP event-shape (C-parameter, thrust) fit troubles came about because p = 1 $\Lambda \sim 0.5 \,\text{GeV} \rightarrow (\Lambda/20 \,\text{GeV}) \sim 2.5 \,\%$
- > Jet physics at LHC is dirty because p = 1 (hadronisation & MPI)
- Hadron-collider inclusive and rapidity-differential Drell-Yan cross sections are believed to have p = 2 (Higgs hopefully also), so leptonic / photonic decays should be clean, aside from isolation. $\Lambda \sim 0.5 \,\text{GeV} \rightarrow (\Lambda/125 \,\text{GeV})^2 \sim 0.002 \,\%$ [Beneke & Braun, hep-ph/9506452; Dasgupta, hep-ph/9911391]
- \blacktriangleright But at LHC, we're also interested in Z, W and Higgs production with non-zero p_T Nobody knew if we have $(\Lambda/p_T)^p$ with p = 1 (a disaster) or p = 2 (all is fine)

What is value of p in $(\Lambda/Q)^p$?

Ferraro Ravasio, Limatola & Nason, 2011.14114 + analytic demonstration in Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, <u>2108.08897</u>

Gavin P. Salam

- Explicit calculations with an effective gluon mass (λ) can provide a strong indication
- > Flatness in plot for $\lambda \rightarrow 0$ indicates **absence of** p = 1 (linear) contribution
- arguably the most important result of the past 18 months, because it lays foundations for precision physics at non-zero p_T

th	e pertu	rbative		
m _H (GeV)	Cross Section (pb)	TH Gaussian %	±PDF %	±α _s %
125.00	4.858E+01	±3.9	±1.9	±2.6

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_{i/p}(x_1) f_{j/p}$$

 $\hat{\sigma}(x_1 x_2 s) \times \left[1 + \mathcal{O}(\Lambda/M)^p\right]$

> Standard QCD+EW perturbation theory, plus a conceptual surprise

Fermilab "wine and cheese" seminar, Feb. 2022

GLUON FUSION – THE ERROR BUDGET

[Czakon, Harlander, Klappert, Niggetiedt '20]

Remove one source of uncertainty!

Future:

- light-quark mass effects
 - large logs to resum?

[Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer '20] Reduce uncertainty: $\sim 1\% \rightarrow 0.6\%$

Future:

- quark-induced EW contributions
- large $p_{\rm T}^{\rm H}$?
- $m_{\rm t}$ dependence in QCD amplitude?

Gavin P. Salam

[adapted from Alexander Huss @ Higgs 2021 see his <u>slides</u> for much more discussion]

Sources of Uncertainties:

• $\delta(PDF + \alpha_s)$ — more data & accurate determinations

• $\delta(PDF - TH)$ — missing N³LO PDFs (AP kernels)

4-loop splitting (low moments): Moch, Rujil, Ueda, Vermaseren & Vogt '21 Drell-Yan @ N3L0: Duhr, Dulat & Mistlberger, '20, '21 still to be incorporated into PDF fits

Fermilab "wine and cheese" seminar, Feb. 2022

Previous slide was for Higgs ("inclusive") total cross section Starting point for any hadron-collider analysis: acceptance (fiducial) cuts

- E.g. ATLAS/CMS $H \rightarrow \gamma \gamma$ cuts
- > Higher- p_t photon: $p_{t,\gamma} > 0.35 m_{\gamma\gamma}$ (ATLAS) or $m_{\gamma\gamma}/3$ (CMS)
- \blacktriangleright Lower- p_t photon: $p_{t,\gamma} > 0.25m_{\gamma\gamma}$
- > Both photons: additional rapidity and isolation cuts

Essential for good reconstruction of the photons and for rejecting large low- p_{t} backgrounds.

Theory-experiment comparisons with identical "fiducial" cuts often considered the Gold Standard of collider physics

Fermilab "wine and cheese" seminar, Feb. 2022

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

inclusive N3L0 σ uncertaities

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

"Gold standard" fiducial cross section gives much worse prediction

> Why? And can this be solved?

Numbers are for ATLAS $H \rightarrow \gamma \gamma p_t$ cuts, CMS cuts are similar

Expect acceptance to increase with increasing $p_{t,H}$

$$p_{t,\pm}(p_{t,\mathrm{H}},\theta,\phi) = \frac{m_{\mathrm{H}}}{2}\sin\theta \pm \frac{1}{2}p_{t,\mathrm{H}}|\cos\phi| + \frac{p_{t,\mathrm{H}}^2}{4m_{\mathrm{H}}}\left(\sin\theta\cos^2\phi + \csc\theta\sin^2\phi\right) + \mathcal{O}_3\,,$$

Gavin P. Salam

Linear p_{tH} dependence of H acceptance = f(p_{tH})

$$f_0 + f_1 \cdot rac{p_{t,\mathrm{H}}}{m_\mathrm{H}} + \mathcal{O}\left(rac{p_{t,\mathrm{H}}^2}{m_\mathrm{H}^2}
ight)$$
See e.g. Frixione & Ridol
Ebert & Tackman
idem + Michel & Stewar
Alekhin et a

 f_0 and f_1 are coefficients whose values depend on the cuts

effect of $p_{t.-}$ cut sets in at $0.1m_{\rm H}$

ot
$$\left[f_0 + f_1 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n)!}{2(n!)} \left(\frac{2C_A \alpha_s}{\pi} \right)^n - \frac{1}{2(n!)} \right]$$

GPS & Slade, 2106.08329

Fermilab "wine and cheese" seminar, Feb. 2022

fi '97 nn '19 *irt '20* al '20

Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, $\mu = m_H/2$

- ► Poor behaviour of N3LL is qualitatively similar to that seen by Billis et al '21
- > Theoretically similar to a power-suppressed ambiguity ~ $(\Lambda_{OCD}/m_{H})^{0.205}$ [inclusive cross sections expected to have Λ^2/m^2]

> At DL & LL (DL+running coupling) factorial divergence sets in from first orders

GPS & Slade, <u>2106.08329</u>

Solution #1: only ever calculate σ_{fid} with help of p_{tH} resummation

- ► Billis, Dehnadi, Ebert, Michel & Tackmann, 2102.08039, argue you should evaluate the fiducial cross section only after resummation of the p_{tH} distribution.
- ► For legacy measurements, resummation is only viable solution
- Our view: not an ideal solution
 - \blacktriangleright Fiducial σ is a hard cross section and shouldn't need resummation
 - robustness of seeing fixed-order & resummation agree)

► losing the ability to use fixed order on its own would be a big blow to the field (e.g. flexibility;

> sensitivity to variation of acceptance at low $p_{t,H} \rightarrow$ complications (e.g. sensitivity to heavy-quark effects in resummation and PDFs — not consistently treated in any N3LL resummation today)

Solution #2a: for future measurements, make simple changes to the cuts

- Simplest option is to replace the cut on the leading photon with a cut on the product of the two photon p_t 's
- ► E.g. $p_{t,\gamma+} \times p_{t,\gamma-} > (0.35m_H)^2$ (and still keep softer photon cut $p_{t,\gamma-} > 0.25m_H$)
- > The product has no linear dependence on $p_{t,H}$

$$p_{t,\text{prod}}(p_{t,\text{H}},\theta,\phi) = \sqrt{p_{t,+}p_{t,-}} = \frac{m_{\text{H}}}{2}\sin\theta + \frac{p_{t,\text{H}}^2}{4m_{\text{H}}}\frac{\sin^2\phi - \cos^2\theta\cos^2\phi}{\sin\theta} + \mathcal{O}_4$$

Gavin P. Salam

Fermilab "wine and cheese" seminar, Feb. 2022

[Several other options are possible, but this combines simplicity and good performance]

Fermilab "wine and cheese" seminar, Feb. 2022

$$\left(\frac{2C_A\alpha_s}{\pi}\right)^n \longrightarrow \quad \frac{1}{4^n} \frac{(2n)!}{4(n!)} \left(\frac{2C_A\alpha_s}{\pi}\right)^n$$

Using product cuts dampens the factorial divergence

NB: the cut on the softer photon is still maintained

Behaviour of perturbative series with product cuts

 $\frac{\sigma_{\text{prod}} - f_0 \sigma_{\text{inc}}}{\sigma_0 f_0} \simeq 0.005_{\alpha_s} - 0.002_{\alpha_s^2} + 0.002_{\alpha_s^3} - 0.001_{\alpha_s^4} + 0.001_{\alpha_s^5} + \dots$ $\simeq 0.005_{\alpha_s} - 0.002_{\alpha_s^2} + 0.000_{\alpha_s^3} - 0.000_{\alpha_s^4} + 0.000_{\alpha_s^5} + \dots$ $\simeq 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + \dots$ $\simeq 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + \dots$

- Factorial growth of series strongly suppressed
- N3LO truncation agrees well with all-order result
- > Per mil agreement between fixed-order and resummation gives confidence that all is under control

- Resummed results $\simeq 0.003$ @DL, $\simeq 0.003$ @LL,
- $\simeq 0.005$ @NNLL,
- $\simeq 0.006$ @N3LL.

Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, $\mu = m_H/2$

beyond the fixed-order formula

parton shower Monte Carlos

Gavin P. Salam

Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)

ATLAS VH: <u>2008.02508</u>,

Source of un	certainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	l uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\rm T}^{\rm miss}$		0.007
Leptons		0.010
-	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up	· -	0.001
Luminosity		0.013
Theoretical a	and modelling uncer	rtainties
Signal		0.038
Backgrounds		0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$		0.058
$\hookrightarrow t\bar{t}$		0.035
\hookrightarrow Single top	o quark	0.027
$\hookrightarrow \mathrm{Diboson}$		0.032
\hookrightarrow Multijet		0.009
MC statistic	al	0.092

Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)

ATLAS VH: <u>2008.02508</u>,

Source of un	certainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	l uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\rm T}^{\rm mass}$		0.007
Leptons		0.010
	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up		0.001
Luminosity		0.013
Theoretical a	and modelling uncer	rtainties
Signal		0.038
Backgrounds	5	0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$		0.058
$\hookrightarrow t\bar{t}$		0.035
\hookrightarrow Single top	o quark	0.027
\hookrightarrow Diboson		0.032
\hookrightarrow Multijet		0.009
MC statistic	പ	0.002

Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)

ATLAS VH: 2008.02508,

а с	, . ,	A •	
Source of u	ncertainty	Avg. impact	
Total		0.372	
Statistical		0.283	
Systematic		0.240	
Experiment	al uncertainties		Foulaugo Di
Small- R jets	S	0.038	For large-R J
Large- R jets	S	0.133	described in I
$E_{\rm T}^{\rm mmss}$		0.007	L
Leptons		0.010	
	b-jets	0.016	
b-tagging	c-jets	0.011	
	light-flavour jets	0.008	
	extrapolation	0.004	
Pile-up		0.001	
Luminosity		0.013	
Theoretical	and modelling unce	rtainties	
Signal		0.038	
Background	S	0.100	
$\hookrightarrow Z + \text{jets}$		0.048	
$\hookrightarrow W + \text{jet}$	s	0.058	
$\hookrightarrow t\bar{t}$		0.035	
\hookrightarrow Single to	op quark	0.027	
\hookrightarrow Diboson		0.032	
\hookrightarrow Multijet		0.009	
MC statistic	cal	0.092	

ts, the uncertainties in the energy and mass scales are [...] as 1]

Take example of ATLAS boosted VH — stat (28%) \sim syst (24%)

ATLAS VH: 2008.02508,

0 0	, • ,	A •
Source of un	certainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	al uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\mathrm{T}}^{\mathrm{mass}}$		0.007
Leptons		0.010
	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up	1	0.001
Luminosity		0.013
Theoretical	and modelling unce	rtainties
Signal		0.038
Backgrounds	5	0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$	3	0.058
$\hookrightarrow t\bar{t}$		0.035
\hookrightarrow Single to:	p quark	0.027
\hookrightarrow Diboson		0.032
\hookrightarrow Multijet		0.009
MC statistic	al	0.092

ts, the uncertainties in the energy and mass scales are [...] as 11

Take example of ATLAS boosted VH — stat (28%) \sim syst (24%)

ATLAS VH: 2008.02508,

0 0	, • ,	A •
Source of un	certainty	Avg. impact
Total		0.372
Statistical		0.283
Systematic		0.240
Experimenta	al uncertainties	
Small- R jets		0.038
Large- R jets		0.133
$E_{\mathrm{T}}^{\mathrm{mass}}$		0.007
Leptons		0.010
	b-jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up	1	0.001
Luminosity		0.013
Theoretical	and modelling unce	rtainties
Signal		0.038
Backgrounds	5	0.100
$\hookrightarrow Z + \text{jets}$		0.048
$\hookrightarrow W + \text{jets}$	3	0.058
$\hookrightarrow t\bar{t}$		0.035
\hookrightarrow Single to:	p quark	0.027
\hookrightarrow Diboson		0.032
\hookrightarrow Multijet		0.009
MC statistic	al	0.092

ts, the uncertainties in the energy and mass scales are $[\ldots]$ as 1

jet energy calibration affects ~1500 papers

Largest uncertainty source is poor understanding of

Resummation @N3LL, but parton showers only LL? Now evolving to NLL

Deductor $k_t \theta$ (" Λ ") ordered

Recoil \perp : local +: local -: global

Tests analytical /numerical for thrust

Nagy & Soper <u>2011.04777</u> (+past decade)

FHP k_t ordered

Recoil \bot : global +: local -: global

Tests analytical for thrust & multiplicity

Forshaw, Holguin & Plätzer Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez <u>2002.11114</u> Hamilton, Medves, GPS, Scyboz, Soyez, <u>2011.10054</u> 2003.06400 Karlberg, GPS, Scyboz, Verheyen, <u>2103.16526</u> + Hamilton <u>2111.01161</u> Fermilab "wine and cheese" seminar, Feb. 2022

Gavin P. Salam

PanLocal $k_t \sqrt{\theta}$ ordered

> Recoil \perp : local +: local -: local

PanGlobal k_t or $k_t \sqrt{\theta}$ ordered

> Recoil \bot : global +: local -: local

Tests numerical for many observables

Tests numerical for many observables

Gavin P. Salam

.

Fermilab "wine and cheese" seminar, Feb. 2022

future colliders

Will e+e- colliders make precision easy?

Table 1.1. Relative statistical uncertainty on $\sigma_{HZ} \times BR(H \to XX)$ and $\sigma_{\nu\bar{\nu}H} \times BR(H \to XX)$, as expected from the FCC-ee data, obtained from a fast simulation of the CLD detector and consolidated with extrapolations from full simulations of similar linear-collider detectors (SiD and CLIC).

$\sqrt{s} \; (\text{GeV})$	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}$ H	HZ	$\nu \overline{\iota}$
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	<u>+</u>
$\Pi \longrightarrow CC$	12.2		± 6.5	F
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	\pm
$H \rightarrow W^+ W^-$	± 1.2		± 2.6	\pm
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	F
$\mathrm{H} ightarrow au au$	± 0.9		± 1.8	
$\mathrm{H} ightarrow \gamma \gamma$	± 9.0		± 18	F
$H \to \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		<0.6	

Notes. All numbers indicate 68% CL intervals, except for the 95% CL sensitivity in the last line. The accuracies expected with $5 ab^{-1}$ at 240 GeV are given in the middle column, and those expected with 1.5 ab^{-1} at $\sqrt{s} = 365 \text{ GeV}$ are displayed in the last column.

Η	
0.9	
:10	
4.5	
3.0	
:10	
± 8	
22	

- > Up to $\sim \times 10$ reduction in uncertainties
- ► Interpreting 0.3% for $H \rightarrow bb$ will require substantial improvements in parametric inputs
- Much of the statistics involves hadronic modes — how well will we be able to exploit them?
- ► Agreement between e^+e^- and LHC will be powerful validation of hadron colliders as precision machines

conclusions

Gavin P. Salam

.

Conclusions

- statistics of the next 15 years.
- Perturbative calculations are making amazing strides -> technically immensely challenging, and making remarkable progress \rightarrow there are still conceptual surprises, e.g. impact of fiducial cuts
- > Other aspects (parameters, PDFs, parton showers, non-perturbative contributions) force us to address conceptually complicated questions, \rightarrow major progress on understanding structure of non-perturbative contributions → prospects for taking parton showers beyond "traditional" Leading Log accuracy

Across much of Higgs physics, theory / MC uncertainties are among the dominant systematic uncertainties — addressing them will be key to benefitting from $\times 20$

PDF4LHC21 v. PDF4LHC15

Gavin P. Salam

perturbative series for fiducial cross sections

Fiducial cross section depends on acceptance and Higgs p_t distribution

To understand qualitative perturbative behaviour consider simple (double-log) approx for p_t distribution

Integrate to get result. **Observe** pathological $\sigma_{\rm fid} = \sigma_{\rm tot}$ perturbative behaviour

 $f(p_{t,\mathrm{H}}) = f_0 + f_1 \cdot \frac{p_{t,\mathrm{H}}}{m_{\mathrm{H}}} + \mathcal{O}\left(\frac{p_{t,\mathrm{H}}^2}{m_{\mathrm{H}}^2}\right)$

 $\sigma_{\rm fid} = \int \frac{d\sigma}{dp_{t\,\rm H}} f(p_{t,\rm H}) dp_{t,\rm H}$

$$\int_{C} \left[f_0 + f_1 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n)!}{2(n!)} \left(\frac{2C_A \alpha_s}{\pi} \right)^n + \right]$$

Growth $\propto n$

Sensitivity to low Higgs pt (and also scale bands): standard cuts

- fixed-order result very sensitive to minimum $p_{t,H}$ value explored in phasespace integration
- only converges once you explore down to $p_{t,\mathrm{H}} \sim 1 \,\mathrm{MeV}$
- ► i.e. extremely difficult to get reliable fixed-order result and once you have it, it is of dubious physical meaning

Replace cut on leading photon \rightarrow cut on product of photon p_t 's Acceptance for $H \rightarrow \gamma \gamma$ $0.80 = \frac{\sqrt{p_{t,+}p_{t,-}} > 0.35m_H}{p_{t,-} > 0.25m_H}$ $f(p_{t,\mathrm{H}}) =$ f(p_{t, H}) 0.75 0.70 J_2 125 GeV 0.65 +25.0 0.0 12.5 *p*_{*t*, *H*} [GeV]

NB: the cut on the softer photon is still maintained

Fermilab "wine and cheese" seminar, Feb. 2022

$$\left(\frac{2C_A\alpha_s}{\pi}\right)^n \longrightarrow \quad \frac{1}{4^n} \frac{(2n)!}{4(n!)} \left(\frac{2C_A\alpha_s}{\pi}\right)^n$$

Using product cuts dampens the factorial divergence

NB: the cut on the softer photon is still maintained

fixed-order sensitivity to low ptH is gone

- fixed-order becomes insensitive to $p_{t,\mathrm{H}}$ values below a few GeV
- overall size of (non-Born part of) fiducial acceptance corrections much smaller
- resummation and fixed order agree at per-mil level

