The power and limits of parton showers

Gavin Salam

Rudolf Peierls Centre for Theoretical Physics & All Souls College, Oxford

DESY Theory Seminar 20 June 2022

Science and

Technology

Facilities Council

THE ROYAL SOCIETY

UNIVERSITY OF

The context of this talk: LHC physics

Standard-model physics (QCD & electroweak)

100 MeV – 4 TeV

direct new-particle searches

100 GeV - 8 TeV

Gavin P. Salam

DESY Theory Seminar, June 2022

top-quark physics

170 GeV – O(TeV)

Higgs physics

125 GeV - 500 GeV

flavour physics (bottom & some charm)

heavy-ion physics

100 MeV - 500 GeV

Gavin P. Salam

DESY Theory Seminar, June 2022

95% of collisions still to be delivered

UNDERLYING **THEORY**

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{B} \mathcal{F} \end{aligned}$ + $\chi_i \mathcal{Y}_{ij} \mathcal{Y}_{j} \phi + h.c$ + $|\mathcal{D}_{\mathcal{M}} \phi|^2 - V(\phi)$

EXPERIMENTAL DATA

how do you make quantitative connection?

Lagrangian \leftrightarrow data ATLAS and CMS (big LHC expts.) have written >700 articles since 2017

predicting full particle structure that comes out of a collision

Event evolution spans 7 orders of magnitude in space-time

simulations use General Purpose Monte Carlo event generators THE BIG 3

Herwig 7

used in ~95% of ATLAS/CMS publications they do an amazing job of simulation vast swathes of data; collider physics would be unrecognisable without them

Pythia 8

Sherpa 2

The 2021 High Energy and Particle Physics Prize of the EPS for an outstanding contribution to High Energy Physics is awarded to Torbjörn Sjöstrand and Bryan Webber for the conception, development and realisation of parton shower Monte Carlo simulations, yielding an accurate description of particle collisions in terms of quantum chromodynamics and electroweak interactions, and thereby enabling the experimental validation of the Standard Model, particle discoveries and searches for new physics.

Torbjörn Sjöstrand: founding author of Pythia Byran Webber: founding author of Herwig (with Marchesini[†])

Elements of a Monte Carlo event generator

Gavin P. Salam

DESY Theory Seminar, June 2022

hard process

Gavin P. Salam

schematic view of key components of QCD predictions and Monte **Carlo event simulation**

schematic view of key components of QCD predictions and Monte **Carlo event simulation**

schematic view of key components of QCD predictions and Monte **Carlo event simulation**

pattern of particles in MC can be directly compared to pattern in experiment

Much of past 20 years' work: MLM, CKKW, MC@NLO, POWHEG, MIN(N)LO, FxFx, Geneva, UNNLOPS, Vincia, etc.

> Largely based on principles from 20-30 years ago

DESY Theory Seminar, June 2022

Much of past 20 years' work: MLM, CKKW, MC@NLO, POWHEG, MINLO, FxFx, Geneva, UNNLOPS, Vincia, etc.

> for new ideas (including connections with heavy-ion collisions) see work by Gustafson, Lönnblad, Sjöstrand

DESY Theory Seminar, June 2022

Much of past 20 years' work: MLM, CKKW, MC@NLO, POWHEG, MINLO, FxFx, Geneva, UNNLOPS, Vincia, etc.

This talk

DESY Theory Seminar, June 2022

Status of parton showers

Gavin P. Salam

DESY Theory Seminar, June 2022

Gavin P. Salam

DESY Theory Seminar, June 2022

2000		2010		2020		
0	NLO		NNLO	[]	[N3L0)]
xed-order matching of parton showers						_
				·····]		
	ouay s widel	y-used sho	wers only L	reading	-colour)) -
(many of today's widely-used showers only 11 @loading colour)						
	NNLL[.]		N3LL		-
summati	on (DY&	Higgs)				
	NNLO			[parts o	f N3L	0]
]			N3LO		
ron coll	iders					

Many groups active on [QCD] parton showers in past 20 years

- Pythia shower [Sjöstrand & Skands '04, Cabouat & Sjostrand, '17]
- Sherpa shower [Schumann & Krauss '07]
- ► Deductor shower [Nagy & Soper '07 '22]
- Vincia shower [Giele, Kosower & Skands '07, Li & Skands '16, ...]
- ► Dire shower [Höche & Prestel '15, ...]
- Herwig angular-ordered showers [Gieseke, Stephens, Webber '03, Bewick et al '19, …]
- ► Herwig dipole showers [Plätzer & Gieseke '09, Forshaw, Holguin & Plätzer '20, ...]

recoil, improved colour-handling, improved spin-handling, higher-order splitting kernels, ... Gavin P. Salam

Various directions: new formulations of classic shower ideas, alternative kinematic

DESY Theory Seminar, June 2022

Parton Shower accuracy matters: e.g. for jet energy calibration (affects ~1500 papers)

Jet energy calibration uncertainty feeds into 75% of ATLAS & CMS measurements

Largest systematic errors (1–2%) come from differences between MC generators (here Sherpa2 v. Pythia8)

> \rightarrow fundamental limit on LHC precision potential

Parton Shower accuracy matters: e.g. for W mass extraction

Consider measurement of W boson mass

Measurements of p_T^Z in $Z/\gamma^* \rightarrow l^+l^-$ decays used to validate the MC predictions for p_T^W

The envelope of shifts in m_W originating from differences in these shower predictions is the dominant theory uncertainty (11 MeV)

$$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}}$$
 MeV

pure QCD event

event with Higgs & Z boson decays

- Project a jet onto a fixe each pixel intensity cor cell.
- Can be used as input f vision, such as deep co

QCD rejection with use of full jet substructure (2021 tools)100x better

First started to be exploited by Thaler & Van Tilburg with *"N-subjettiness"* (2010/11)

can we trust machine learning? A question of confidence...

Unless you are highly confident in the information you have about the markets, you may be better off ignoring it altogether

- Harry Markowitz (1990 Nobel Prize in Economics) [via S Gukov]

Gavin P. Salam

parton shower basics

illustrate with dipole / antenna showers

Gustafson & Pettersson 1988, Ariadne 1992, main Sherpa & Pythia8 showers, option in Herwig7, Vincia & Dire showers & (partially) Deductor shower

Gavin P. Salam

DESY Theory Seminar, June 2022

Start with $q\bar{q}$ state.

Throw a random number to determine down to what scale state persists unchanged

$\frac{dP_2(v)}{dv} = -f_{2\to 3}^{q\bar{q}}(v) P_2(v)$

• • • •

Start with q-qbar state.

Throw a random number to determine down to what scale state persists unchanged

 $\frac{dP_2(v)}{dv} = -f_{2\to 3}^{q\bar{q}}(v) P_2(v)$

• • • •

- Start with q-qbar state.
- Throw a random number to determine down to what scale state persists unchanged
- At some point, state splits $(2\rightarrow 3, i.e. \text{ emits})$ gluon). Evolution equation changes

$$- = - \left[f_{2 \to 3}^{qg}(v) + f_{2 \to 3}^{g\bar{q}}(v) \right] P_{3}$$

- gluon is part of two dipoles (qg), $(g\bar{q})$, each treated as independent
- (many showers use a large N_C limit)

self-similar evolution continues until it reaches a nonperturbative scale

logarithmic accuracy

How do you defined the accuracy of a parton shower?

- ➤ With a parton shower (+hadronisation) you produce a "realistic" full set of particles. You can ask questions of arbitrary complexity:
 - the multiplicity of particles

 - [machine learning might "learn" many such features]

> For a total cross section, e.g. for Higgs production, it's easy to talk about systematic improvements (LO, NLO, NNLO, ...). But they're restricted to that one observable

The total transverse momentum with respect to some axis (broadening) The angle of 3rd most energetic particle relative to the most energetic one

> how can you prescribe correctness & accuracy of the answer, when the questions you ask can be arbitrary?

Logarithmic accuracy: a schematic intro

It's common to hear that showers are Leading Logarithmic (LL) accurate.

That language, widespread for multiscale problems, comes from analytical resummations. E.g. transverse momentum broadening

$$B = \frac{\sum_{i} |\vec{p}_{i} \times \vec{n}_{j}|}{\sum_{i} |\vec{p}_{i}|}$$

You can resum cross section for B to be very small (as it is in most events) $\sigma(B < e^{L}) = \sigma_{tot} \exp \left[\frac{1}{\alpha_s}g_1(\alpha_s L) + g_1(\alpha_s L)\right]$ $[\alpha_{s} \ll 1, \alpha_{s}L \sim -1] \qquad \overset{L}{\overset{\sigma}{}} L \sim O(\frac{1}{\sigma}) \quad \text{NLL} \sim O(1)$

Dokshitzter, Lucenti, Marchesini & GPS '98

$$g_2(\alpha_s L) +$$

today concentrate just on LL & NLL i.e. control of terms up to O(1)

1. origin of logarithms: soft (dE/E) and collinear (d0/0) enhancements

Lund diagram/plane

2-dimensional representation of logarithmic phase space

emission probability $\sim \alpha_{\rm s} ({\rm dln} \, k_t) ({\rm dln} \, \theta)$

B. Andersson, G. Gustafson, L. Lonnblad and Pettersson 1989 + declustering-based analysis: Dreyer, GPS & Soyez, <u>1807.04758</u> 35

2. classes of logarithmic enhancement: $\alpha_s^n L^{2n}$, $\alpha_s^n L^n$

 $\alpha_s^n L^{2n}$:

- \blacktriangleright each emission "costs" a power of α_s
- > full 2-dimensions of phase space \rightarrow factor of L^2
- vetoed regions of phase space count in similar way ("Sudakov" form factor)

2. classes of logarithmic enhancement: $\alpha_s^n L^{2n}$, $\alpha_s^n L^n$

Gavin P. Salam

 $\alpha_{s}^{n}L^{n}$:

- > each emission "costs" a power of α_{c}
- some physics effects only involve one-dimensional phase space for emissions — factor of L
- some observables only sensitive to a one-dimensional phase space for emissions

2. classes of logarithmic enhancement: $\alpha_{c}^{n}L^{2n}$, $\alpha_{c}^{n}L^{n}$

 $\alpha_{s}^{n}L^{n}$:

- ► a nearby pair of real emissions, or one emission + one virtual, brings two powers of α_{s}
- > when α_s^2 enhanced by twodimensional phase space, get $\alpha_{\rm s}^2 L^2 \times \cdots$
- standard observables (e.g. event) shapes) care only about integrated sum of double-real and real-virtual (and overall double-virtual counterpart) = cusp anomalous dimension

0.01

Designing NLL parton showers

defining "NLL" aims a robust recoil framework ingredients for specific phase-space regions

Mrinal Dasgupta Manchester

Frédéric Dreyer Oxford

Keith Hamilton Univ. Coll. London

Emma Slade Oxford (PhD) \rightarrow GSK.ai

Basem El-Menoufi Manchester

Alexander Karlberg

PanScales A project to bring logarithmic understanding and accuracy to parton showers

2018-20

Melissa van Beekveld Oxford

Pier Monni CERN

Gavin Salam Oxford

since 2017

Grégory Soyez IPhT, Saclay

since

2020

Oxford

Rok Medves Oxford (PhD)

Ludovic Scyboz Oxford

Jack Helliwell Oxford

Silvia Ferrario Ravasio Oxford

Alba Soto-Ontoso IPhT, Saclay

Defining what we mean by NLL

A Matrix Element condition

- correctly reproduce n-parton tree-level matrix element for arbitrary configurations, so long as all emissions well separated in the Lund diagram
- supplement with unitarity, 2-loop running coupling & cusp anomalous dimension

<u>Resummation condition:</u> reproduce NLL results for all standard resummations

- global event shapes
- non-global observables
- Fragmentation functions
- ► multiplicities

42

1. Recoil: the core of any shower

Dipole showers conserve momentum at each step. Traditional dipole-local recoil:

DESY Theory Seminar, June 2022

43

1. Recoil: the core of any shower

Dipole showers conserve momentum at each step. Traditional dipole-local recoil:

Shower initially generated matrix element for particle $\tilde{1}$, whose momentum differs (by ~ 50%) from final particle 1.

Matrix element is incorrect wrt final momentum 1.

First observed: Andersson, Gustafson, Sjogren '92 Closely related effect present for Z pt: Nagy & Soper 0912.4534 Impact on log accuracy across many observables: Dasgupta, Dreyer, Hamilton, Monni, GPS, <u>1805.09327</u>

 $\mathrm{d}\mathcal{P}_{\tilde{\imath}\to ik}^{\mathrm{FS}} = \frac{\alpha_s(k_{\perp}^2)}{2\pi} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \frac{\mathrm{d}z}{z} \frac{\mathrm{d}\varphi}{2\pi} N_{ik}^{\mathrm{sym}} \left[zP_{\tilde{\imath}\to ik}(z) \right]$ 9

45

1. Correct recoil rule: no side effects on other distant emissions

One approach

 \overline{q}

 θ_{1q} left almost unchanged if \perp recoil from emission of 2 taken by (much harder) q

<u>Can be achieved in multiple ways:</u>

- global transverse recoil
- Iocal transverse recoil, with non-standard shower ordering & dipole partition ("**PanLocal**"; Nagy & Soper <u>0912.4534</u>, "Deductor")

(Dasgupta et al <u>2002.11114</u>, "PanGlobal"; Holguin Seymour & Forshaw <u>2003.06400</u>)

2. individual ingredients: (a) large-angle soft (non-global logarithms)

Gavin P. Salam

- dipole showers get this right at large N_c "for free"
- (NB: angular ordered showers don't — Banfi, Corcella & Dasgupta, <u>hep-ph/0612282</u>)

2. individual ingredients: (b) hard-collinear spin correlations

Gavin P. Salam

- recipe proposed long ago by
 Collins ('86)
- implemented in Herwig showers
 (Deductor & CVolver frameworks also discuss it)
- Included in PanScales showers:
 Karlberg, GPS, Scyboz, Verheyen,
 <u>2103.16526</u>

2. individual ingredients: (c) soft, then hard-collinear spin correlations

- Explicitly excluded from Collins recipe ('86)
- Deductor & CVolver frameworks could in principle get it, but not implemented)
- \blacktriangleright Efficient & simple large- N_c scheme introduced and implemented in PanScales showers: Hamilton, Karlberg, GPS, Scyboz, Verheyen, <u>2103.16526</u>

2. individual ingredients: (d) colour, beyond leading-N_c limit

0.01

Standard showers have wrong subleading colour terms at LL $(LL \times 1/N_c^2 \sim NLL)$

Gustafson '93 Dasgupta et al '18

Angular ordering ("coherence") points to correct solution when all emissions well separated in angle

> Friberg, Gustafson, Hakkinen '96 Hamilton, Medves, GPS, Scyboz, Soyez, 2011.10054 Forshaw, Holguin & Platzer, 2011.15087

2. individual ingredients: (d) colour, beyond leading- N_c limit

Gavin P. Salam

PanScales approach

- Systematic expansion, with full
 colour for up to *n* emissions in any
 vertical slice
- Implemented for n = 1 & 2
 (segment & "NODS" methods)
- difference between them gives
 estimate of residual systematic error

Hamilton, Medves, GPS, Scyboz, Soyez, <u>2011.10054</u>

(NB: coherence-violating logarithms with initial partons & complex final state not addressed so far in PanScales)

2. individual ingredients: (e) all of the above, with initial-state hadrons

van Beekveld, Ferrario Ravasio, GPS, Soto-Ontoso, Soyez, Verheyen, 2205.02237

Testing NLL showers

matrix element tests all-order resummation comparisons

Test class 1: tree-level (2nd/3rd-order) expansion of shower v. factorised matrix element

Gavin P. Salam

DESY Theory Seminar, June 2022

semi-analytically (recoil checks)

numerically(colour & spin)

- let ► run full shower with specific value of $\alpha_s(Q)$ & measure an observable: azimuth between two highest-k_t emissions (soft-collinear)
- ▶ ratio to NLL should be flat $\equiv 1$
- it isn't: have we got an NLL mistake? Or a residual subleading (NNLL) term?

let ► run full shower with specific value of $\alpha_s(Q)$ & measure an observable: azimuth between two highest-k_t emissions (soft-collinear)

- ▶ ratio to NLL should be flat $\equiv 1$
- it isn't: have we got an NLL mistake? Or a residual subleading (NNLL) term?
- \succ try reducing $\alpha_{s}(Q)$, while keeping constant $\alpha_{c} L \equiv \ln k_{t1}/Q$

> NLL effects, $(\alpha_s L)^n$, should be unchanged, subleading ones, $\alpha_{s}(\alpha_{s}L)^{n}$, $\rightarrow 0$ eory Seminar, June 2022

let ► run full shower with specific value of $\alpha_s(Q)$ & measure an observable: azimuth between two highest-k_t emissions (soft-collinear)

- ▶ ratio to NLL should be flat $\equiv 1$
- it isn't: have we got an NLL mistake? Or a residual subleading (NNLL) term?
- \succ try reducing $\alpha_{s}(Q)$, while keeping constant $\alpha_{c}L [L \equiv \ln k_{t_1}/Q]$

> NLL effects, $(\alpha_s L)^n$, should be unchanged, subleading ones, $\alpha_{s}(\alpha_{s}L)^{n}$, $\rightarrow 0$ eory Seminar, June 2022

let ► run full shower with specific value of $\alpha_s(Q)$ & measure an observable: azimuth between two highest-k_t emissions (soft-collinear)

- \blacktriangleright ratio to NLL should be flat $\equiv 1$
- it isn't: have we got an NLL mistake? Or a residual subleading (NNLL) term?
- \succ try reducing $\alpha_{s}(Q)$, while keeping constant $\alpha_{c} L \equiv \ln k_{t1}/Q$

 \checkmark extrapolation $\alpha_s \rightarrow 0$ agrees with NLL

eory Seminar, June 2022

Test class 2: full shower v. all-order NLL — many observables

Test class 2: full shower v. all-order NLL — many observables

Gavin P. Salam

NLL accuracy tests - $pp \rightarrow Z$

PanScales status: $e^+e^- \rightarrow jets \& pp \rightarrow Z/W/H$ (w. massless quarks)					
phase space region	critical ingredients	observables	accuracy	colour	
soft collinear	no long-distance recoil	global event shapes	NLL	full	
hard collinear	DGLAP split-fns + amplitude spin- correlations	fragmentation functions & special azimuthal observables	NLL	full	
soft commensurate angle	large-N _c dipoles	energy flow in slice	NLL	full up to 2 emsns, then LC	
soft, then hard collinear	soft spin correlations	special azimuthal observables	NLL	full up to 2 emsns, then LC	
all nested		subjet and/or particle multiplicity	NDL	full	

PanGlobal PanLocal $k_t \sqrt{\theta}$ ordered k_t or $k_t \sqrt{\theta}$ ordered Recoil Recoil \perp : local ⊥: global +: local +: local -: local -: local Tests Tests numerical numerical for many for many observables observables

Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez <u>2002.11114</u> + subsequent work incl van Beekveld, Ferrario Ravasio, Karlberg, Medves, Scyboz, Soto-Ontoso, Verheyen

Gavin P. Salam

Deductor

 $k_t \theta$ (" Λ ") ordered

Recoil \perp : local +: local -: global

Tests analytical for thrust & multiplicity

FHP

 k_t ordered

Recoil

⊥: global

+: local

-: global

Forshaw, Holguin & Plätzer 2003.06400

Tests analytical / numerical for thrust

Nagy & Soper <u>2011.04777</u> (+past decade)

To test spin in shower, you need observables and reference resummations

Energy-energy-energy correlations (EEEC), resummed analytically (Chen, Moult & Zhu, 2011.02492) Lund declustering ($\Delta \psi_{12}$, $\Delta \psi_{11'}$), resummed numerically with "toy shower" (extending unpolarized Microjets code from Dasgupta, Dreyer, GPS, Soyez 1411.5182)

Quantum mechanical interference in otherwise quasi-classical regime

Karlberg, GPS, Scyboz & Verheyen, <u>2103.16526</u>

Spin correlations in full shower

magnitude of spin correlation effects

EEEC	-0.(
$\Delta \psi_{12}, z_1, z_2 > 0.1$	-0.(
$\Delta \psi_{12}, z_1 > 0.1, z_2 > 0.3$	-0.(

Lund declustering $\Delta \psi_{12}$ offers interesting prospects for experimental measurements of spin-correlation effects in jets

Karlberg, GPS, Scyboz & Verheyen, <u>2103.16526</u>

DESY Theory Seminar, June 2022

008 025042

$pp \rightarrow Z + hadrons$: small- p_t asymptotics for Z p_t spectrum

Which showers reproduce it?

van Beekveld, Ferrario Ravasio, Hamilton, GPS, Soto-Ontoso, Soyez, to appear

future prospects

Towards a complete public NLL shower

Going beyond NLL

Gavin P. Salam

DESY Theory Seminar, June 2022

69

Towards a complete public NLL shower

Interface to Pythia and potentially other Monte Carlos

uncertainty estimates

Underlying Calculations We need (a) reference results soft & collinear limits

Gavin P. Salam

Underlying Calculations We need (a) reference results and (b) understanding of NNLL logs in **soft** & **collinear** limits

Next-to-leading non-global logarithms in QCD Banfi, Dreyer and Monni, 2104.06416

Lund and Cambridge multiplicities for precision physics Medves, Soto-Ontoso, Soyez, <u>2205.02861</u>

Groomed jet mass as a direct probe of collinear parton dynamics Anderle, Dasgupta, El-Menoufi, Guzzi, Helliwell, 2007.10355 [see also SCET work, Frye, Larkoski, Schwartz & Yan, 1603.09338 + ...]

Dissecting the collinear structure of quark splitting at NNLL Dasgupta, El-Menoufi, <u>2109.07496</u>

Conclusions

conclusions

- > Despite their central role, understanding of their accuracy has been elusive
- Minimal baseline for progress beyond 1980's technology is to achieve NLL accuracy = control of terms $(\alpha_{c}L)^{n}$
- and initial-state showers
- ► Next steps:

 - mapping out the path towards higher accuracy

> Parton showers (and event generators in general), and their predictions of the full structure of events, are an essential part of LHC's very broad physics programme

> We've demonstrated leading-colour NLL is possible, full colour can be included at LL, (and at NLL for most observables), spin correlations fit in nicely, for both final

full phenomenological showers (e.g. including matching, pp processes with jets)

DESY Theory Seminar, June 2022

