CUTS FOR 2-BODY DECAYS AT COLLIDERS

Particle theory seminar, Würzburg July 2022

Gavin Salam, with Emma Slade, arXiv:2106.08329 Rudolf Peierls Centre for Theoretical Physics \& All Souls College, University of Oxford

Precision is crucial part of LHC programme: e.g. establishing the Higgs sector

Over the next 15 years
Today's $\sim 8 \%$ on $\mathrm{H} \rightarrow \mathrm{\gamma Y}$ (5\% on all-channel combination) $\rightarrow \sim 2 \%$ at HL-LHC

We wouldn't consider QED established if it had only been tested at O(10\%) accuracy

Figure 1. Projected uncertainties on κ_{i}, combining ATLAS and CMS: total (grey box), statistical (blue), experimental (green) and theory (red). From Ref. [2].

Starting point for any hadron-collider analysis: acceptance (fiducial) cuts

E.g. ATLAS/CMS $H \rightarrow \gamma \gamma$ cuts

$>$ Higher- p_{t} photon: $p_{t, \gamma}>0.35 m_{\gamma \gamma}$ (ATLAS) or $m_{\gamma \gamma} / 3$ (CMS)
$>$ Lower- p_{t} photon: $p_{t, \gamma}>0.25 m_{\gamma \gamma}$
> Both photons: additional rapidity and isolation cuts
Essential for good reconstruction of the photons and for rejecting large low- p_{t} backgrounds.

Theory-experiment comparisons with identical "fiducial" cuts often considered the Gold Standard of collider physics

$H \rightarrow \gamma Y:$ N3LO K-factor

Chen, Gehrmann, Glover, Huss, Mistlberger \& Pelloni, 2102.07607

Recent surprise: $H \rightarrow \gamma \gamma$ fiducial N3LO σ uncertainties $\sim 2 \times$ greater than inclusive N3LO σ uncertaities

Chen, Gehrmann, Glover, Huss, Mistlberger \& Pelloni, 2102.07607

the origin of the problem

Standard $p_{\mathrm{t}, \mathrm{y}}$ cuts \rightarrow Higgs p_{t} dependence of acceptance

Numbers are for ATLAS $H \rightarrow \gamma \gamma p_{t}$ cuts, CMS cuts are similar

Expect acceptance to increase with increasing $p_{t, \mathrm{H}}$

$$
p_{t, \pm}\left(p_{t, \mathrm{H}}, \theta, \phi\right)=\frac{m_{\mathrm{H}}}{2} \sin \theta \pm \frac{1}{2} p_{t, \mathrm{H}}|\cos \phi|+\frac{p_{t, \mathrm{H}}^{2}}{4 m_{\mathrm{H}}}\left(\sin \theta \cos ^{2} \phi+\csc \theta \sin ^{2} \phi\right)+\mathcal{O}_{3},
$$

Linear $p_{t H}$ dependence of H acceptance $\equiv f\left(p_{t H}\right)$

Linear $p_{t H}$ dependence of H acceptance $\equiv f\left(p_{t H}\right)$

perturbative series for fiducial cross sections
 $f\left(p_{t, \mathrm{H}}\right)=f_{0}+f_{1} \cdot \frac{p_{t, \mathrm{H}}}{m_{\mathrm{H}}}+\mathcal{O}\left(\frac{p_{t, \mathrm{H}}^{2}}{m_{\mathrm{H}}^{2}}\right)$

Fiducial cross section depends on acceptance and Higgs p_{t} distribution

$$
\sigma_{\mathrm{fid}}=\int \frac{d \sigma}{d p_{t, \mathrm{H}}} f\left(p_{t, \mathrm{H}}\right) d p_{t, \mathrm{H}}
$$

To understand qualitative perturbative behaviour consider simple (double-log) approx for p_{t} distribution

$$
\frac{d \sigma^{\mathrm{DL}}}{d p_{t, \mathrm{H}}}=\frac{\sigma_{\mathrm{tot}}}{p_{t, \mathrm{H}}} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{2 \log ^{2 n-1} \frac{m_{\mathrm{H}}}{2 p_{\mathrm{H}, \mathrm{H}}}}{(n-1)!}\left(\frac{2 C_{A} \alpha_{s}}{\pi}\right)^{n}
$$

$$
\int_{0}^{m_{H}} \frac{d p_{t, H}}{p_{t, H}} \frac{\alpha_{s}^{n}}{(n-1)!}\left(\log \frac{m_{H}}{p_{t, H}}\right)^{2 n-1} \cdot\left(\frac{p_{t, H}}{m_{H}}\right) \sim \alpha_{s}^{n} \frac{(2 n-1)!}{(n-1)!} \sim \alpha_{s}^{n} 2^{2 n} n!
$$

perturbative series: results in DL approximation

$$
\begin{aligned}
\frac{\sigma_{\mathrm{asym}}^{\mathrm{DL}}}{f_{0} \sigma_{\mathrm{tot}}}-1 & \simeq \frac{f_{1}^{\mathrm{asym}}}{f_{0}} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{(2 n)!}{2(n!)}\left(\frac{2 C_{A} \alpha_{s}}{\pi}\right)^{n}+\cdots \\
& \simeq \frac{f_{1}^{\mathrm{asym}}}{f_{0}}(\underbrace{0.16}_{\alpha_{s}}-\underbrace{0.33}_{\alpha_{s}^{2}}+\underbrace{0.82}_{\alpha_{s}^{3}}-\underbrace{2.73}_{\alpha_{s}^{4}}+\underbrace{11.72}_{\alpha_{s}^{5}}+\ldots) \simeq \underbrace{\frac{f_{1}^{\text {asym }}}{f_{0}} \times \underbrace{0.05}_{\text {resummed }}} .
\end{aligned}
$$

> Alternating signs imply the asymptotic series can be Borel-resummed (reflecting the fact that the resummed $p_{t H}$ distribution is well-behaved)
> but fixed-order truncation is dangerous

Behaviour of perturbative series in various log approximations

Resummed

$$
\begin{array}{rlr}
\frac{\sigma_{\mathrm{asym}}-f_{0} \sigma_{\mathrm{inc}}}{\sigma_{0} f_{0}} & \simeq 0.15_{\alpha_{s}}-0.29_{\alpha_{s}^{2}}+0.71_{\alpha_{s}^{3}}-2.39_{\alpha_{s}^{4}}+10.31_{\alpha_{s}^{5}}+\ldots & \simeq 0.06 @ \mathrm{DL} \\
& \simeq 0.15_{\alpha_{s}}-0.23_{\alpha_{s}^{2}}+0.44_{\alpha_{s}^{3}}-1.15_{\alpha_{s}^{4}}+3.86_{\alpha_{s}^{5}}+\ldots & \simeq 0.06 @ \mathrm{LL} \\
& \simeq 0.18_{\alpha_{s}}-0.15_{\alpha_{s}^{2}}+0.29_{\alpha_{s}^{3}}+\ldots & \simeq 0.10 @ \mathrm{NNLL}, \\
& \simeq 0.18_{\alpha_{s}}-0.15_{\alpha_{s}^{2}}+0.31_{\alpha_{s}^{3}}+\ldots & \simeq 0.12 @ \mathrm{~N} 3 \mathrm{LL}
\end{array}
$$

Thanks to Pier Monni \& RadISH for supplying NN(N)LL distributions \mathcal{E} expansions, $\mu=m_{H} / 2$ (relative to previous slide, this now has full expression for acceptance)

- At DL \& LL (DL+running coupling) factorial divergence sets in from first orders
- Poor behaviour of N3LL is qualitatively similar to that seen by Billis et al '21
> Theoretically similar to a power-suppressed ambiguity $\sim\left(\Lambda_{\mathrm{QCD}} / m_{\mathrm{H}}\right)^{0.205}$ [inclusive cross sections expected to have Λ^{2} / m^{2}]

where in phase space does the bad behaviour come from?

$$
\int_{0}^{m_{H}} \frac{d p_{t, H}}{p_{t, H}} \frac{\alpha_{s}^{n}}{(n-1)!}\left(\log \frac{m_{H}}{p_{t, H}}\right)^{2 n-1} \cdot\left(\frac{p_{t, H}}{m_{H}}\right)
$$

log-enhancement pushes support to small $p_{t H}$
50% of integral comes from $p_{t H} \lesssim m_{H} e^{-(2 n-1)-2 / 3} \sim 0.4 \mathrm{GeV}$ for $n=3$

This is pathological: all-order $p_{t H}$ distribution is almost zero for such small $p_{t H}$ values

Sensitivity to cut on minimal Higgs p_{t} (in real \& virt.): N3LO v. all-orders

N3LO truncation: asymmetric cuts

> fixed-order result very sensitive to minimum $p_{t, \mathrm{H}}$ value explored in phasespace integration

- only converges once you explore down to $p_{t, \mathrm{H}} \sim 1 \mathrm{MeV}$
> i.e. extremely difficult to get reliable fixed-order result and once you have it, it is of dubious physical meaning

solutions

Solution \#1: only ever calculate $\sigma_{\text {fid }}$ with help of $p_{\text {HH }}$ resummation

> Billis, Dehnadi, Ebert, Michel \& Tackmann, 2102.08039, argue you should evaluate the fiducial cross section only after resummation of the p_{tH} distribution.
> For legacy measurements, resummation is only viable solution

- Our view: not an ideal solution
- Fiducial σ is a hard cross section
 and shouldn't need resummation
> losing the ability to use fixed order on its own would be a big blow to the field (e.g. flexibility; robustness of seeing fixed-order \& resummation agree)
$>$ sensitivity to variation of acceptance at low $p_{t, H} \rightarrow$ complications (e.g. sensitivity to heavy-quark effects in resummation and PDFs - not consistently treated in any N3LL resummation today)

Solution \#2a: for future measurements, make simple changes to the cuts

- Simplest option is to replace the cut on the leading photon with a cut on the product of the two photon p_{t} 's
$>$ E.g. $p_{t, \gamma+} \times p_{t, \gamma-}>\left(0.35 m_{H}\right)^{2}$ (and still keep softer photon cut $\left.p_{t, \gamma_{-}}>0.25 m_{H}\right)$
- The product has no linear dependence on $p_{t, H}$

$$
p_{t, \operatorname{prod}}\left(p_{t, \mathrm{H}}, \theta, \phi\right)=\sqrt{p_{t,+} p_{t,-}}=\frac{m_{\mathrm{H}}}{2} \sin \theta+\frac{p_{t, \mathrm{H}}^{2}}{4 m_{\mathrm{H}}} \frac{\sin ^{2} \phi-\cos ^{2} \theta \cos ^{2} \phi}{\sin \theta}+\mathcal{O}_{4}
$$

[Several other options are possible, but this combines simplicity and good performance]

Replace cut on leading photon \rightarrow cut on product of photon pt's

$$
f\left(p_{t, \mathrm{H}}\right)=f_{0}+f_{2}\left(\frac{p_{t, \mathrm{H}}}{m_{\mathrm{H}}}\right)^{2}+\mathcal{O}\left(\frac{p_{t, \mathrm{H}}^{2}}{m_{\mathrm{H}}^{2}}\right) \quad \begin{aligned}
& \text { linear } \rightarrow \\
& \text { quadratic }
\end{aligned}
$$

NB: the cut on the softer photon is still maintained

Replace cut on leading photon \rightarrow cut on product of photon pt's

$$
f\left(p_{t, \mathrm{H}}\right)=f_{0}+f_{2}\left(\frac{p_{t, \mathrm{H}}}{m_{\mathrm{H}}}\right)^{2}+\mathcal{O}\left(\frac{p_{t, \mathrm{H}}^{2}}{m_{\mathrm{H}}^{2}}\right) \quad \text { linear } \rightarrow
$$

$$
\frac{(2 n)!}{2(n!)}\left(\frac{2 C_{A} \alpha_{s}}{\pi}\right)^{n} \rightarrow \frac{1}{4^{n}} \frac{(2 n)!}{4(n!)}\left(\frac{2 C_{A} \alpha_{s}}{\pi}\right)^{n}
$$

Using product cuts dampens the factorial divergence

NB: the cut on the softer photon is still maintained

Behaviour of perturbative series with product cuts

$$
\begin{aligned}
\frac{\sigma_{\mathrm{prod}}-f_{0} \sigma_{\mathrm{inc}}}{\sigma_{0} f_{0}} & \simeq 0.005_{\alpha_{s}}-0.002_{\alpha_{s}^{2}}+0.002_{\alpha_{s}^{3}}-0.001_{\alpha_{s}^{4}}+0.001_{\alpha_{s}^{5}}+\ldots \\
& \simeq 0.005_{\alpha_{s}}-0.002_{\alpha_{s}^{2}}+0.000_{\alpha_{s}^{3}}-0.000_{\alpha_{s}^{4}}+0.000_{\alpha_{s}^{5}}+\ldots \\
& \simeq 0.005_{\alpha_{s}}+0.002_{\alpha_{s}^{2}}-0.001_{\alpha_{s}^{3}}+\ldots \\
& \simeq 0.005_{\alpha_{s}}+0.002_{\alpha_{s}^{2}}-0.001_{\alpha_{s}^{3}}+\ldots
\end{aligned}
$$

Thanks to Pier Monni \& RadISH for supplying NN(N) LL distributions \& expansions, $\mu=m_{H} / 2$

- Factorial growth of series strongly suppressed
> N3LO truncation agrees well with all-order result
> Per mil agreement between fixed-order and resummation gives confidence that all is under control

fixed-order sensitivity to low $p_{H H}$ is gone

- fixed-order becomes insensitive to $p_{t, \mathrm{H}}$ values below a few GeV
> overall size of (non-Born part of) fiducial acceptance corrections much smaller
> resummation and fixed order agree at per-mil level

rapidity cuts

Real life measurements have rapidity cuts

For example in the ATLAS detector:
> $\left|\eta_{\gamma}\right|<2.37$
(region where EM calorimeter has sufficiently fine segmentation to
distinguish γ from $\pi^{0} \rightarrow \gamma \gamma$)
$>\operatorname{not} 1.37<\left|\eta_{\gamma}\right|<1.52$
transition region between barrel and end-cap calorimeters

Visualising rapidity cuts

$$
\cos \theta<\tanh y_{\mathrm{cut}}\left[1+\frac{\cos \phi}{\cosh y_{\mathrm{cut}}} \cdot \frac{p_{t, \mathrm{H}}}{m_{\mathrm{H}}}+\frac{1}{2}\left(\operatorname{csch}^{2} y_{\mathrm{cut}}-\cos 2 \phi\right) \tanh ^{2} y_{\mathrm{cut}} \cdot \frac{p_{t, \mathrm{H}}^{2}}{m_{\mathrm{H}}^{2}}+\mathcal{O}_{3}\right]
$$

Acceptance has linear dependence on Higgs p_{t}, but sign depends on decay orientation so linear- $p_{t H}$ term vanishes after azimuthal averaging

visualising acceptance versus Higgs rapidity and $p_{t:}$ Look at derivative wrt $p_{t H}$

interplay with η_{y} cuts

Regions with bad behaviour
(linear $p_{t H}$ derivative) are those where the photon p_{t} cuts are active at Born level

Regions with good behaviour are those where the rapidity cuts make the photon p_{t} cuts irrelevant

interplay with η_{y} cuts

$f\left(p_{t, \mathrm{H}}, y_{\mathrm{H}}\right)$ has non-zero linear $p_{t, \mathrm{H}}$ derivative at $p_{t, \mathrm{H}}=0$
fixed-order perturbation theory has trouble

interplay with η_{y} cuts

$f\left(p_{t, \mathrm{H}}, y_{\mathrm{H}}\right)$ has zero linear $p_{t, \mathrm{H}}$ derivative at $p_{t, \mathrm{H}}=0$
fixed-order perturbation theory will be fine
p_{HH} derivative of acceptance: white $=0$

NB: at these points Born η_{γ} and $p_{t, \gamma}$ cuts are degenerate. If doing rapidity binning, choose bins that are not too narrow

$$
\text { (e.g. } \pm 0.1 \text { around them) }
$$

interplay with η_{γ} cuts

$f\left(p_{t, \mathrm{H}}, y_{\mathrm{H}}\right)$ has zero linear $p_{t, \mathrm{H}}$ derivative at $p_{t, \mathrm{H}}=0$
fixed-order perturbation theory will be fine

Solution \#2b: design cuts whose acceptance is independent of $p_{\text {Hh }}$ (at small $\left.\mathrm{p}_{\boldsymbol{H}}\right)$

- keep standard cuts on softer photon p_{t} and on photon rapidities
> replace harder-photon p_{t} cut with CollinsSoper angle cut (transverse boostinvariant)
- selectively loosen CS angle cut to keep $\mathrm{p}_{\mathrm{tH}}{ }^{-}$ independent acceptance as far as possible

Hardness [and rapidity] compensating boost invariant cuts (CBI $_{\boldsymbol{\mu}}$ and $\mathrm{CB}_{\mu \mathrm{R}}$)

Core idea 1: cut on decay p_{t} in Collins-Soper frame

$$
\vec{p}_{t, \mathrm{CS}}=\frac{1}{2}\left[\vec{\delta}_{t}+\frac{\vec{p}_{t, 12} \cdot \vec{\delta}_{t}}{p_{t, 12}^{2}}\left(\frac{m_{12}}{\left.\left.\sqrt{m_{12}^{2}+p_{t, 12}^{2}}-1\right) \vec{p}_{t, 12}\right], \quad \vec{\delta}_{t}=\vec{p}_{t, 1}-\vec{p}_{t, 2}, ~}\right.\right.
$$

Core idea 2: relax $\mathrm{p}_{\mathrm{t}, \mathrm{CS}}$ cut at higher $\mathrm{p}_{\mathrm{t}, \mathrm{H}}$ values to maintain constant / maximal acceptance

Solution \#3: defiducialise (cf. Glazov 2001.02933 for DY)

> Option 3a: divide out both $p_{t, \mathrm{H}}$ and y_{H} dependence of acceptance from fiducial differential cross section

$$
\begin{aligned}
\sigma_{\text {defid }} & =\int_{-y_{\mathrm{H}}^{\max }}^{+y_{\mathrm{H}}^{\max }} d y_{\mathrm{H}} \int_{0}^{p_{t, \mathrm{H}}^{\max }} d p_{t, \mathrm{H}} \frac{d \sigma^{\text {fid }}}{d y_{\mathrm{H}} d p_{t, \mathrm{H}}} \frac{1}{f\left(y_{\mathrm{H}}, p_{t, \mathrm{H}}\right)} \\
& \equiv \int_{-y_{\mathrm{H}}^{\max }}^{+y_{\mathrm{H}}^{\max }} d y_{\mathrm{H}} \int_{0}^{p_{t, \mathrm{H}}^{\max }} d p_{t, \mathrm{H}} \frac{d \sigma}{d y_{\mathrm{H}} d p_{t, \mathrm{H}}}
\end{aligned}
$$

> Option 3b: divide out just $p_{t, \mathrm{H}}$ dependence of acceptance from fiducial differential cross section (adapted from suggestion by referee of paper)

$$
\begin{aligned}
\sigma_{\text {defid }, p_{t, \mathrm{H}}} & =\int_{-y_{\mathrm{H}}^{\max }}^{+y_{\mathrm{H}}^{\max }} d y_{\mathrm{H}} \int_{0}^{p_{t, \mathrm{H}}^{\max }} d p_{t, \mathrm{H}} \frac{d \sigma^{\mathrm{fid}}}{d y_{\mathrm{H}} d p_{t, \mathrm{H}}} \frac{f\left(y_{\mathrm{H}}, 0\right)}{f\left(y_{\mathrm{H}}, p_{t, \mathrm{H}}\right)}, \\
& \equiv \int_{-y_{\mathrm{H}}^{\max }}^{+y_{\mathrm{H}}^{\max }} d y_{\mathrm{H}} \int_{0}^{p_{t, \mathrm{H}}^{\max }} d p_{t, \mathrm{H}} \frac{d \sigma}{d y_{\mathrm{H}} d p_{t, \mathrm{H}}} f\left(y_{\mathrm{H}}, 0\right),
\end{aligned}
$$

NB1: some care needed in choice of integration limits, to avoid division by zero (or, for 3 a, by small numbers for $y_{H} \gtrsim 2$)
NB2: defiducialisation is theoretically robust for a scalar particle (in a way that it is not for DY)
NB3: code at https://github.com/gavinsalam/two-body-cuts can also help with defiducialisation for Higgs

other processes, e.g. Drell-Yan

the problem is not just for Higgs

> any time you have a 2-body final state that is symmetric at LO, one should ask if the analysis involves the asymmetry induced when there is a non-zero system p_{t}
> Drell-Yan measurements often use asymmetric (or symmetric) lepton cuts
> continuum YY production
(but very large NLO/NNLO corrections from new topologies are probably more important)
> $t \bar{t}$ studies, e.g. plot p_{t} of leading and subleading top-quark (NB: those observables can be relevant for separating out different production mechanisms, but there are better ways of doing that cf. Caola, Dreyer, McDonals \& GPS, 2101.06068)

Z p_{T} distribution — a showcase for LHC precision

$$
\sigma_{\text {fid }}=736.2 \pm 0.2 \text { (stat) } \pm 6.4 \text { (syst) } \pm 15.5 \text { (lumi) } \mathrm{pb}
$$

Normalised distribution's statistical and systematic errors well below 1% all the way to $\mathrm{p}_{\mathrm{T}} \sim 200 \mathrm{GeV}$

Largest normalisation err is luminosity then lepton ID

Precision luminosity measurement in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ in 2015 and 2016 at CMS

Table 4: Summary of contributions to the relative systematic uncertainty in $\sigma_{\text {vis }}$ (in \%) at $\sqrt{s}=13 \mathrm{TeV}$ in 2015 and 2016. The systematic uncertainty is divided into groups affecting the description of the vdM profile and the bunch population product measurement (normalization), and the measurement of the rate in physics running conditions (integration). The fourth column indicates whether the sources of uncertainty are correlated between the two calibrations at $\sqrt{s}=13 \mathrm{TeV}$

Source	2015 [\%]	2016 [\%]	Corr
Normalization uncertainty			
Bunch population			
Ghost and satellite charge	0.1	0.1	Yes
Beam current normalization	0.2	0.2	Yes
Beam position monitoring			
Orbit drift	0.2	0.1	No
Residual differences	0.8	0.5	Yes
Beam overlap description			
Beam-beam effects	0.5	0.5	Yes
Length scale calibration	0.2	0.3	Yes
Transverse factorizability	0.5	0.5	Yes
Result consistency			
Other variations in $\sigma_{\text {vis }}$	0.6	0.3	No
Integration uncertainty			
Out-of-time pileup corrections			
Type 1 corrections	0.3	0.3	Yes
Type 2 corrections	0.1	0.3	Yes
Detector performance			
Cross-detector stability	0.6	0.5	No
Linearity	0.5	0.3	Yes
Data acquisition			
CMS deadtime	0.5	<0.1	No
Total normalization uncertainty	1.3	1.0	-
Total integration uncertainty	1.0	+07	-
Total uncertainty	1.6	1.2	-

Luminosity: the systematic common to all measurements

> has hovered around 2% for many years (except LHCb)

- CMS has recently shown that they can get it down to 1.2%
> a major achievement, because it matters across the spectrum of precision LHC results

Drell-Yan harmonic decomposition (with Collins-Soper angles)

$$
\begin{aligned}
& \frac{d \sigma}{d^{4} q d \cos \theta d \phi}=\frac{3}{16 \pi} \frac{d \sigma^{\text {unpol. }}}{d^{4} q}\left(h_{u}(\theta, \phi)+\sum_{i=0}^{7} A_{i}(q) h_{i}(\theta, \phi)\right) \\
& h_{u}=1+\cos ^{2} \theta, \quad h_{0}=\frac{1}{2}\left(1-3 \cos ^{2} \theta\right), \quad h_{1}=\sin 2 \theta \cos \phi, \\
& h_{2}=\frac{1}{2} \sin ^{2} \theta \cos 2 \phi, \\
& h_{5}=\sin ^{2} \theta \sin 2 \phi, \\
& h_{3}=\sin \theta \cos \phi \text {, } \\
& h_{4}=\cos \theta \text {, } \\
& h_{7}=\sin \theta \sin \phi .
\end{aligned}
$$

modulo certain classes of electroweak correction

$$
\frac{d \sigma_{\text {fid }}}{d^{4} q}=\frac{d \sigma^{\text {unpol. }}}{d^{4} q}\left[f^{(u)}(q)+\sum_{i=0 \ldots 7} A_{i}(q) f^{(i)}(q)\right] \quad \begin{gathered}
\text { the } f^{(i)}(q) \text { are the } \\
\text { acceptances } \\
\text { for each harmonic } i
\end{gathered}
$$

$$
f^{(\mathrm{x})}(q)=\frac{3}{16 \pi} \int_{-1}^{1} d \cos \theta \int_{-\pi}^{\pi} d \phi h_{\mathrm{x}}(\theta, \phi) \Theta_{\text {cuts }}(\theta, \phi, q)
$$

Example in Drell-Yan case

- harmonic acceptances $f^{(i)}(q)$ are zero for $i=3 \ldots 7$ (if we treat $\ell^{ \pm}$ equivalently)
> cross section weights multiplying them
$>A_{0}, A_{2} \sim p_{t}^{2}, A_{1} \sim p_{t}$
- if $f^{(u)}$ has at most quadratic dependence on p_{t} and $f^{(1)}$ is zero at $p_{t}=0$, effective cross section acceptance will have quadratic dependence and we should be safe

Z N3LO truncation (unpol. part)

Example in Drell-Yan case

> problems are \%-level, i.e. much smaller than in Higgs case, because $C_{A} \rightarrow C_{F}$
> but experimental precisions are higher too

$$
\begin{array}{rlrl}
\frac{\sigma_{\mathrm{sym}}^{(\mathrm{u})}-f_{0} \sigma_{\mathrm{inc}}}{\sigma_{0} f_{0}} & \simeq-0.074_{\alpha_{s}}+0.051_{\alpha_{s}^{2}}-0.057_{\alpha_{s}^{3}}+0.090_{\alpha_{s}^{4}}-0.181_{\alpha_{s}^{5}}+\ldots & \simeq-0.047 @ \mathrm{DL}, \\
& \simeq-0.074_{\alpha_{s}}+0.027_{\alpha_{s}^{2}}-0.014_{\alpha_{s}^{3}}+0.010_{\alpha_{s}^{4}}-0.010_{\alpha_{s}^{5}}+\ldots & \simeq-0.055 @ L L \\
& \simeq-0.118_{\alpha_{s}}+0.012_{\alpha_{s}^{2}}-0.016_{\alpha_{s}^{3}}+\ldots & & \simeq-0.114 @ \mathrm{NNLL}, \\
& \simeq-0.118_{\alpha_{s}}+0.012_{\alpha_{s}^{2}}-0.016_{\alpha_{s}^{3}}+\ldots & \simeq-0.114 @ \mathrm{~N} 3 \mathrm{LL} .
\end{array}
$$

symmetric cuts

Z N3LO truncation (unpol. part)

Example in Drell-Yan case (unpol.)

> problems are \%-level, i.e. much smaller than in Higgs case, because $C_{A} \rightarrow C_{F}$

- but experimental precisions are higher too
> product cuts are much more convergent and stable

$$
\begin{aligned}
\frac{\sigma_{\mathrm{prod}}^{(\mathrm{u})}-f_{0} \sigma_{\mathrm{inc}}}{\sigma_{0} f_{0}} & \simeq-0.006_{\alpha_{s}}-0.000_{\alpha_{s}^{2}}+0.000_{\alpha_{s}^{3}}-0.000_{\alpha_{s}^{4}}-0.000_{\alpha_{s}^{5}}+\ldots & \simeq-0.006 @ \mathrm{DL} \\
& \simeq-0.006_{\alpha_{s}}-0.000_{\alpha_{s}^{2}}-0.000_{\alpha_{s}^{3}}+0.000_{\alpha_{s}^{4}}-0.000_{\alpha_{s}^{5}}+\ldots & \simeq-0.007 @ \mathrm{LL} \\
& \simeq-0.018_{\alpha_{s}}-0.009_{\alpha_{s}^{2}}-0.003_{\alpha_{s}^{3}}+\ldots & \simeq-0.030 @ \mathrm{NNLL}, \\
& \simeq-0.018_{\alpha_{s}}-0.009_{\alpha_{s}^{2}}-0.002_{\alpha_{s}^{3}}+\ldots & \simeq-0.029 @ \mathrm{~N} 3 \mathrm{LL}
\end{aligned}
$$

product cuts

DY p_{t} dependence of harmonic acceptances with product and boost invariant cuts

It is possible to get identically zero p_{t} dependence for all harmonic acceptances (at central rapidity) with an extra cut
$\cos \theta>\bar{c}=\frac{-c_{0}+\sqrt{4-3 c^{2}}}{2}$

Full N3LO calculation (all harmonics)

Chen, Gehrmann, Glover, Huss, Monni, Rottoli, Re, Torrielli, 2203.01565

Order k	$\sigma[\mathrm{pb}]$ Symmetric cuts		σ [pb] Product cuts	
	$\mathrm{N}^{k} \mathrm{LO}$	$\mathrm{N}^{k} \mathrm{LO}+\mathrm{N}^{k} \mathrm{LL}$	$\mathrm{N}^{k} \mathrm{LO}$	$\mathrm{N}^{k} \mathrm{LO}+\mathrm{N}^{k} \mathrm{LL}$
3	$722.9(1.1)_{-1.09 \%}^{+0.68 \%} \pm 0.9$	$726.2(1.1)_{-0.77 \%}^{+1.07 \%}$	$816.8(1.1)_{-0.73 \%}^{+0.45 \%} \pm 0.8$	$816.6(1.1)_{-0.69 \%}^{+0.87 \%}$
	$+3 \mathrm{pb} \sim 0.50$	4	$-0.2 \mathrm{pb} \sim$	$.02 \%$

fixed-order \& resummed for fiducial σ agree better with product cuts than symmetric cuts (scale uncertainty also lower with product cuts, but only moderately)

Conclusions

> Fixed-order perturbation theory can be badly compromised by existing (2-body) cuts (\rightarrow intriguing questions about asymptotics of QCD perturbative series)

- In simple cases (e.g. $\mathrm{H} \rightarrow \mathrm{\gamma} \gamma$), can be solved by resummation. But physics will be more robust if we can reliably use both fixed-order and resummed+FO results (and both yield similar central values \& uncertainties)
> A better long-term solution may be to revisit experimental cuts:
> product and boost-invariant cuts give much better perturbative series
> Potentially relevant also for other processes (for DY: effects at the $0.5-1 \%$-level)
- Alternatively: in Higgs case, you can defiducialise
$>$ Cuts with little p_{tH} dependence (or defiducialisation) may be useful also, e.g., for extrapolating measurements to STXS or more inclusive cross sections, with limited dependence on BSM or nonperturbative effects.
- Needs addressing in future LHC measurements for robust accuracy in Run 3 \& HL-LHC

Backup

Effective power-ambiguity in truncation of perturbative series (for p_{t}^{p} dependence)
$\left(\frac{\Lambda}{Q}\right)^{|r| \frac{\left(11 C_{A}-2 n_{f}\right) p^{2}}{48 C}}$
C is C_{A} (for $g g \rightarrow X$) or $C_{F}($ for $q \bar{q} \rightarrow X)$
r captures difference true all-order scaling and DL approx

Numerical studies give stable result for $p=1$ (linear dep.) giving $(\Lambda / Q)^{0.205}$ for $g g \rightarrow X$ and $(\Lambda / Q)^{0.76}$ for $q \bar{q} \rightarrow X$. Scaling with quadratic cuts $(p=2)$ remains tbd

Cut Type	cuts on	small- $p_{t, \mathrm{H}}$ dependence	f_{n} coefficient	$p_{t, \mathrm{H}}$ transition
symmetric	$p_{t,-}$	linear	$+2 s_{0} /\left(\pi f_{0}\right)$	none
asymmetric	$p_{t,+}$	linear	$-2 s_{0} /\left(\pi f_{0}\right)$	Δ
sum	$\frac{1}{2}\left(p_{t,-}+p_{t,+}\right)$	quadratic	$\left(1+s_{0}^{2}\right) /\left(4 f_{0}\right)$	2Δ
product	$\sqrt{p_{t,-}+p_{t,+}}$	quadratic	$s_{0}^{2} /\left(4 f_{0}\right)$	2Δ
staggered	$p_{t, 1}$	quadratic	$s_{0}^{4} /\left(4 f_{0}^{3}\right)$	Δ
Collins-Soper	$p_{t, \mathrm{CS}}$	none	-	2Δ
CBI_{H}	$p_{t, \mathrm{cs}}$	none	-	$2 \sqrt{2} \Delta$
rapidity	y_{γ}	quadratic	$f_{0} s_{0}^{2} / 2$	

Table 1: Summary of the main hardness cuts, the variable they cut on at small $p_{t, \mathrm{H}}$, and the small- $p_{t, \mathrm{H}}$ dependence of the acceptance. For linear cuts $f_{n} \equiv f_{1}$ multiplies $p_{t, \mathrm{H}} / m_{\mathrm{H}}$, while for quadratic cuts $f_{n} \equiv f_{2}$ multiplies $\left(p_{t, \mathrm{H}} / m_{\mathrm{H}}\right)^{2}$ (in all cases there are additional higher order terms that are not shown). For a leading threshold of $p_{t, \text { cut }}, s_{0}=2 p_{t, \text { cut }} / m_{\mathrm{H}}$ and $f_{0}=\sqrt{1-s_{0}^{2}}$, while for the rapidity cut $s_{0}=1 / \cosh \left(y_{\mathrm{H}}-y_{\mathrm{cut}}\right)$. For a cut on the softer lepton's transverse momentum of $p_{t,-}>p_{t, \text { cut }}-\Delta$, the right-most column indicates the $p_{t, \mathrm{H}}$ value at which the $p_{t,-}$ cut starts to modify the behaviour of the acceptance (additional $\mathcal{O}\left(\Delta^{2} / m_{\mathrm{H}}\right)$ corrections not shown). For the interplay between hardness and rapidity cuts, see sections 4.2, 4.3 and 5.2.

Cuts to remove the IR sensitivity

ATLAS

$$
\begin{aligned}
& p_{\mathrm{T}}^{\gamma_{1}} \geq 0.35 \cdot M_{\mathrm{H}} \\
& p_{\mathrm{T}}^{\gamma_{2}} \geq 0.25 \cdot M_{\mathrm{H}}
\end{aligned}
$$

$$
f\left(p_{\mathrm{T}}^{\mathrm{H}}\right)=f_{0}+f_{1} \cdot p_{\mathrm{T}}^{\mathrm{H}}+\mathcal{O}\left(\left(p_{\mathrm{T}}^{\mathrm{H}}\right)^{2}\right)
$$

Product cuts [salan, slade rat

$$
\begin{aligned}
\sqrt{p_{\mathrm{T}}^{\gamma_{1}}} p_{\mathrm{T}}^{\gamma_{2}} & \geq 0.35 \cdot M_{\mathrm{H}} \\
p_{\mathrm{T}}^{\gamma_{2}} & \geq 0.25 \cdot M_{\mathrm{H}}
\end{aligned}
$$

$$
f\left(p_{\mathrm{T}}^{\mathrm{H}}\right)=f_{0}
$$

$$
+f_{2} \cdot\left(p_{\mathrm{T}}^{\mathrm{H}}\right)^{2}+\mathcal{O}\left(\left(p_{\mathrm{T}}^{\mathrm{H}}\right)^{3}\right)
$$

Alex Huss @ Higgs 2021

- $\mathrm{NNLO} \times \mathrm{K}_{\mathrm{N}^{3} \mathrm{LO}}$

$\approx \mathrm{N}^{3} \mathrm{LO}$

* very flat
" no "features"
> robust
(v.s. resummation)

Sensitivity to low Higgs p_{t} (and also scale bands): sum \& product cuts

Option of changing thresholds

$\mathrm{CBI}_{\mathrm{HR}}$ v. standard cuts

Interplay with rapidity cuts

CB1 ${ }_{\boldsymbol{H}}$ cuts: acceptance v. p_{H} at several y_{H} values

CMS CBI ${ }_{H R}$ (high $-y_{H}$ raised)

CBI ${ }_{\text {нr }}$ w. CMS rapidity cuts

