LIGHT (AND LEPTONS) IN THE PROTON

Milano Bicocca, September 2022

Rudolf Peierls Centre for Theoretical Physics & All Souls College, University of Oxford

Paolo's papers with speakers & organisers

Three papers in common with Paolo

Conference in honour of Paolo Nason, Milan, September 2022

Paolo's papers with \geq 250 citations

ncit /yr jrn nAu title

1.	0709.2092	4059	271	jhp	3	Matching NLO QCD computations with Parton Show
2.	1002.2581	3776	300	jhp	4	A general framework for implementing NLO calcu
3.	0409146hp	3448	192	jhp	1	A New method for combining NLO QCD with shower
4.	87–12	1644	47	npb	3	The Total Cross-Section for the Production of H
5.	89–04	1204	36	npb	3	The One Particle Inclusive Differential Cross-
6.	0707.3088	1149	76	jhp	3	A Positive-weight next-to-leading-order Monte (
7.	0305252hp	1127	58	jhp	3	Matching NLO QCD and parton showers in heavy f
8.	91-09-24	985	32	npb	3	Heavy quark correlations in hadron collisions a
9.	9803400hp	936	38	jhp	3	The P(T) spectrum in heavy flavor hadroproduct:
10.	1111.5869	886	82	plb	5	Top-pair production at hadron colliders with ne
11.	0907.4076	860	65	jhp	4	NLO single-top production matched with shower :
12.	0306211hp	806	42	jhp	4	Soft gluon resummation for Higgs boson product:
13.	9801375hp	686	28	npb	4	NLL resummation of the heavy quark hadroproduct
14.	1205.6344	610	59	jhp	6	Theoretical predictions for charm and bottom p
15.	0911.5299	601	47	jhp	2	NLO Higgs boson production via vector-boson fu
16.	0303085hp	590	30	jhp	5	The t anti-t cross-section at 1.8-TeV and 1.96-
17.	0805.4802	589	41	jhp	4	NLO vector-boson production matched with showe
18.	0812.0578	581	42	jhp	4	NLO Higgs boson production via gluon fusion ma
19.	0502203hp	509	29	prl	3	QCD predictions for charm and bottom production
20.	9604351hp	507	19	npb	4	The Resummation of soft gluons in hadronic col
21.	88-02	468	14	npb	4	Total Cross-Sections for Heavy Flavor Production
22.	1107.5051	466	42	jhp	4	W+W-, WZ and ZZ production in the POWHEG BOX
23.	0102134hp	458	21	jhp	3	The p(T) spectrum in heavy flavor photoproduct:
24.	1206.3572	370	36	jhp	3	MINLO: Multi-Scale Improved NLO
25.	0804.2800	370	26	jhp	5	Updated predictions for the total production c
26.	1012.3380	327	28	jhp	5	Jet pair production in POWHEG
27.	9702287hp	321	13	р	4	Heavy quark production
28.	1309.0017	321	35	jhp	4	NNLOPS simulation of Higgs boson production
29.	1306.2542	301	33	jhp	4	$HW^{\Lambda + 0 and 1 jet at NL0 with the P0$
30.	88-06	283	8	npb	2	QCD Radiative Corrections to the Photoproduction
31.	9602208hp	283	11	plb	4	The Top cross-section in hadronic collisions
- 32	00-12	277.	-	nnh	2	The Eragmentation function for heavy quarks in
33.	1607.04266	272	44	prl	4	How bright is the proton? A precise determinat:
34.	9310350np	269	9	מוק	4	Improving the weizsacker-wittiams approximation
35.	0312132hp	265	14	jnp	5	QCD analysis of first \$b\$ cross-section data a
30.	1001.2312	202	Z1	npp	- 4	neavy quarks in geed-inelastic scattering

ver simulations: the POWHEG method ilations in shower Monte Carlo programs: the POWHEG BOX Monte Carlo algorithms Heavy Quarks in Hadronic Collisions Section for Heavy Quark Production in Hadronic Collisions Carlo for heavy flavour hadroproduction lavor production at next-to-leading order ion ext-to-next-to-leading logarithmic soft-gluon resummation in POWHEG: s- and t-channel contributions ion at hadron colliders tion cross-section roduction at the LHC sion matched with shower in POWHEG -TeV: A Study of the systematics due to parton densities and scale dependence r in POWHEG itched with shower in POWHEG on at RHIC lisions on in Hadronic Collisions and QCD

ion

ross sections of top and of heavier quark pairs at the Tevatron and at the LHC

WHEG BOX interfaced to GoSam and their merging within MiNLO on of Heavy Quarks

OCD ion of the photon parton distribution function in in electron - proton collisions t 1.96-TeV

parton distribution functions (PDFs)

LHC physics needs PDFs in region $\sim 10^{-3} - 0.5$

Typically known with good **precision ~1–3%**

E.g. NNPDF, MMHT, CT & PDF4LHC working group (+ also HERAPDF, ABM, ...)

PDF4LHC15 for

parton distribution functions (PDFs)

LHC physics needs PDFs in ~ 10⁻³ –

Typically known **precision** ~

E.g. NNPDF, MMHT, CT & PL

PDF4LHC15 for

parton distribution functions (PDFs)

One exception:

the photon distribution inside the proton (had up to 100% uncertainty)

NNPDF

model-independent y PDF fit (c. 2013)

it mattered for di-lepton, di-boson, ttbar, EW higgs, etc.

Gavin P. Salam

Photon fusion

1512.05751, 1512.05776, 1512.08502, 1601.00386, 1601.00638, 1601.01144, 1601.01571, 1601.01712, 1601.03772, 1601.07167, 1601.07187, 1602.02380, 1602.07574, 1601.07774, 1603.00287 ... more

Conference in honour of Paolo Nason, Milan, September 2022

Gavin P. Salam

The 750 GeV excess from photon-photon and quark-quark processes

Tanumoy Mandal

(Moriond QCD, March 20, 2016)

Widely discussed photon-PDF estimates

	elastic	inelastic	LHAPDF public computer-readable form?
Gluck Pisano Reya 2002	dipole	model	X
MRST2004qed	X	model	\checkmark
CT14qed_inc	dipole	model (data-constrained)	
Martin Ryskin 2014	dipole (only electric part)	model	
Harland-Lang, Khoze Ryskin 2016	dipole	model	X
NNPDF23qed (& NNPDF30qed)	no separati		

elastic part long known: Budnev, Ginzburg, Meledin & Serbo, Phys.Rept. 1974

How do you do better? \rightarrow Use electron-proton scattering

- Experiments have been going on for decades
- Usually seen as photons from electron probing proton structure

• • • •

How do you do better? \rightarrow Use electron—proton scattering

- Experiments have been going on for decades
- ► Usually seen as photons from electron probing proton structure
- But can be viewed as electron probing proton's photonic field
- Everything about unpolarized EM electron-proton interaction encoded in two "structure functions" $F_2(x,Q^2)$ & $F_L(x,Q^2)$

$$\frac{d\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left(\left(1 - y + \frac{y^2}{2} \left(1 + 2x^2 \frac{m_p^2}{Q^2} \right) \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right)$$

February 2016

Gian Giudice Congratulations, Paolo!

on his appointment to the Accademia Nazionale dei Lincei. Paolo joins in this prestigious academy our Director General, Fabiola Gianotti, and three other former TH staff members, Luciano Maiani, Guido Martinelli, and Gabriele Veneziano.

Gian Francesco Giudice Theoretical Physics Department, CERN CH 1211 Geneva 23, Switzerland Tel. +41 22 767 3203

Gavin P. Salam

Most of the world uses Mathematica...

svn co svn+ssh://nason@pcte15.mib.infn.it/Maxima

read the README and follow the instruction.

Import 8 March 2016 at 16:51 Hide

Conference in honour of Paolo Nason, Milan, September 2022

Part A: getting the core formula

 F_2 and F_L

$$f_{\gamma/p}(x,\mu^2) = \int dx' \int dQ^2 \left[c_2(\dots)F_2(x',Q^2) + c_L(\dots)F_L(x',Q^2) \right]$$

> Our task: figure out the coefficients $c_2(...)$ and $c_L(...)$ multiplying F_2 and F_L

Conference in honour of Paolo Nason, Milan, September 2022

Expect photon distribution to be an integral over standard DIS structure functions,

Manohar, Nason, GPS & Zanderighi, arXiv:1607.04266 (use of BSM inspired by Drees & Zeppenfeld, PRD39(1989)2536)

Heavy-lepton cross section in terms of structure functions

 $\sigma = \frac{1}{4p \cdot k} \int \frac{d^4q}{(2\pi)^4 q^4} e_{\rm ph}^2(q^2) \left[4\pi W_{\mu\nu} L^{\mu\nu}(k,q)\right] \times 2\pi \delta((k-q)^2 - M^2)$

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

(use of BSM inspired by Drees & Zeppenfeld, PRD39(1989)2536)

heavy neutral lepton L (mass M)

$L^{\mu u}(k,q)$ leptonic tensor, calculate with Feynman diag.

hadronic tensor, known in terms of F_2 and F_L

Cross section in terms of structure functions

hard-scattering cross section calculate in collinear factorisation

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

MS photon distribution: **TO BE DEDUCED**

 $f_{\gamma/p}(x,\mu^2)$

Cross section in terms of structure functions

Hard cross section driven by the photon distribution at LO

 $\hat{\sigma}_a(z,\mu^2) = \alpha(\mu^2)\delta(1-z)\delta_{a\gamma} + \frac{\alpha^2(\mu^2)}{2\pi}$

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

$$2 + 3z + zp_{\gamma q}(z) \ln \frac{M^2(1-z)^2}{z\mu^2} \left[\sum_{i \in \{q,\bar{q}\}} e_i^2 \delta_{ai} + \frac{1}{2} \right] \sum_{i \in \{q,\bar{q}\}} e_i^2 \delta_{ai} + \frac{1}{2} \sum_{i \in \{q,\bar{q}\}} e_i^2 \delta_{ai} + \frac{1$$

Photon PDF in terms of F_2 and F_L — the LUXqed approach

 $xf_{\gamma/p}(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_{\frac{x^2m_p^2}{p}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) \right\}$ $\left[\left(zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z, Q^2) - z^2 F_L\left(\frac{x}{z}, Q^2\right) \right]$ $-\alpha^2(\mu^2)z^2F_2\left(\frac{x}{z},\mu^2\right)$

It subsequently emerged that two "forgotten" papers, Anlauf et. al, CPC70(1992)97 Mukherjee & Pisano, <u>hep-ph/0306275</u>, had the correct integrand (but not the limits)

This includes terms $\alpha \ (\alpha_s \ L)^n$ $\alpha \ (\alpha_s \ L)^n$ $\alpha^2 \ L^2 \ (\alpha_s \ L)^n$ $(L = ln \ \mu^2/\Lambda^2)$

our 2017 work went one order higher (e.g. extra power of α_s)

July 2016: Finishing the paper

Paolo Nason PN WRONG TITLE !!!! To: g.zanderighi1@physics.ox.ac.uk, Gavin Salam, Aneesh Manohar, Resent-From: Gavin Salam

Ha! the title is wrong!

It says how bright is the photon!

How could we miss this?

Ρ.

☐ Import-2 14 July 2016 at 07:23

Conference in honour of Paolo Nason, Milan, September 2022

Hide

photon PDF results

Model-independent uncertainty (NNPDF) was 50–100%

Χ

PDF4LHC15 for u_V & NNPDF23 for γ

photon PDF results

- Model-independent uncertainty (NNPDF) was 50–100%
- ► Goes down to O(1%) with LUXqed determination

0.8 up valence photon × 10 0.6 y from x f_i/p (x, μ^2) LUXqed 0.4 0.2 $\mu = 100 \text{ GeV}$ 0.1 0.001 0.01

PDF4LHC15 for u_V & LUXqed for v

di-lepton spectrum

yy component has few-% effect on Drell-Yan spectrum; negligible uncertainty

$pp \rightarrow l^+l^-$, 13 TeV (QCD only at LO) 1.3 with QED, incl. $\gamma\gamma$ (γ PDF uncert. only) with QED, no $\gamma\gamma$ (full PDF uncert.) → stat. error with 300 fb⁻¹ 1.2 LUXqed_plus_PDF4LHC15_nnlo 100 esult ratio to 0.9 2000 3000 1000 M [GeV]

How bright is the proton? [y momentum fraction]

% of proton's momentum carried by photon 1.4 NNPDF30 MRST2004 (0,1) 1.2 CT14qed_inc 68%cl (0,11) 1 LUXqed 0.8 0.6 0.4 0.2 0 1000 10000 10 100 μ [GeV]

ohoton momentum [%]

momentum ($\mu = 100$ GeV)				
gluon	46.8 ± 0.4%			
up valence	18.2 ± 0.3%			
down valence	7.5 ± 0.2%			
light sea quarks	20.7 ± 0.4%			
charm	4.0 ± 0.1%			
bottom	2.5 ± 0.1%			
photon	$0.426 \pm 0.003\%$			

LUXqed_plus_PDF4LHC15_nnlo_100

(1+107 members, symmhessian, errors handled by LHAPDF out of the box,

valid for $\mu > 10$ GeV)

Where do we submit? \rightarrow PRL

Referee A

[...] This work is interesting but it does not meet the criteria of innovation and impact expected for publication in Physical Review Letters. [...]

Luckily, referees B & C were more positive; paper eventually accepted...

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

. . . .

Where do we submit? \rightarrow PRL

Subject: To_author LU16377 Manohar PRL Editors' Suggestion Date:Wed, 26 Oct 2016 16:01:04 -0400 From:prl@aps.org **Reply-To:**prl@aps.org To:g.zanderighi1@physics.ox.ac.uk

Dear Dr. Zanderighi,

We are pleased to inform you that we have selected your recently accepted manuscript to be a PRL Editors' Suggestion. [...]

Please reply to this email with an image that meets the criteria appended below.

Conference in honour of Paolo Nason, Milan, September 2022

October 2016 — Getting CERN's help for an image

with thanks to CERN artist Daniel Dominguez for his patience with us!

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

Key subsequent developments

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

Leptons in the proton: <u>2005.06477</u> (Buonocore, Nason, Tramontano, Zanderighi)

$$\begin{aligned} x_{\ell} f_{\ell}(x_{\ell}, \mu_F^2) &= \left(\frac{1}{2\pi}\right)^2 \int_{x_{\ell}}^1 \frac{\mathrm{d}x}{x} z_{\ell} \int_{x}^1 \frac{\mathrm{d}z}{z} \int_{\frac{m_F^2 x^2}{1-z}}^{\frac{\mu_F^2}{1-z}} \frac{\mathrm{d}Q^2}{Q^2} \alpha^2(Q^2) \\ &\left\{ \begin{array}{l} P_{\ell\gamma}(z_{\ell}) \log \frac{\mu_F^2}{(1-z_{\ell}) z_{\ell} \left(Q^2 + \frac{m_{\ell}^2}{z_{\ell}(1-z_{\ell})}\right)} \left[F_2\left(zP_{\gamma q}(z) + \frac{2m_F^2 x^2}{Q^2}\right) - F_L z^2\right] \right. \\ &\left. + F_2\left[4(z-2)^2 z_{\ell}(1-z_{\ell}) - (1+4z_{\ell}(1-z_{\ell})) zP_{\gamma q}(z)\right] \end{aligned}$$

$$+ F_{L}z^{2}P_{\ell\gamma}(z_{\ell}) - \frac{2m_{p}^{2}x^{2}}{Q^{2}}F_{2} - \left(F_{2}\frac{2m_{p}^{2}x^{2}}{Q^{2}} - z^{2}F_{L}\right)4z_{\ell}(1 - z_{\ell})$$

$$+ \frac{m_{\ell}^{2}F_{2}}{m_{\ell}^{2} + Q^{2}z_{\ell}(1 - z_{\ell})}\left[zP_{\gamma q}(z) - 8z_{\ell}(1 - z_{\ell})\left(1 - z - \frac{m_{p}^{2}x^{2}}{Q^{2}}\right) + \frac{2m_{p}^{2}x^{2}}{Q^{2}}\right]$$

$$- \frac{m_{\ell}^{2}F_{L}z^{2}}{m_{\ell}^{2} + Q^{2}z_{\ell}(1 - z_{\ell})}\left[2 - P_{\ell\gamma}(z_{\ell})\right]\right\}.$$

$$(2.25)$$

$$+ F_{L}z^{2}P_{\ell\gamma}(z_{\ell}) - \frac{2m_{p}^{2}x^{2}}{Q^{2}}F_{2} - \left(F_{2}\frac{2m_{p}^{2}x^{2}}{Q^{2}} - z^{2}F_{L}\right)4z_{\ell}(1 - z_{\ell})$$

$$+ \frac{m_{\ell}^{2}F_{2}}{m_{\ell}^{2} + Q^{2}z_{\ell}(1 - z_{\ell})}\left[zP_{\gamma q}(z) - 8z_{\ell}(1 - z_{\ell})\left(1 - z - \frac{m_{p}^{2}x^{2}}{Q^{2}}\right) + \frac{2m_{p}^{2}x^{2}}{Q^{2}}\right]$$

$$- \frac{m_{\ell}^{2}F_{L}z^{2}}{m_{\ell}^{2} + Q^{2}z_{\ell}(1 - z_{\ell})}\left[2 - P_{\ell\gamma}(z_{\ell})\right]\right\}.$$

$$(2.25)$$

$$+ F_{L}z^{2}P_{\ell\gamma}(z_{\ell}) - \frac{2m_{p}^{2}x^{2}}{Q^{2}}F_{2} - \left(F_{2}\frac{2m_{p}^{2}x^{2}}{Q^{2}} - z^{2}F_{L}\right)4z_{\ell}(1 - z_{\ell})$$

$$+ \frac{m_{\ell}^{2}F_{2}}{m_{\ell}^{2} + Q^{2}z_{\ell}(1 - z_{\ell})}\left[zP_{\gamma q}(z) - 8z_{\ell}(1 - z_{\ell})\left(1 - z - \frac{m_{p}^{2}x^{2}}{Q^{2}}\right) + \frac{2m_{p}^{2}x^{2}}{Q^{2}}\right]$$

$$- \frac{m_{\ell}^{2}F_{L}z^{2}}{m_{\ell}^{2} + Q^{2}z_{\ell}(1 - z_{\ell})}\left[2 - P_{\ell\gamma}(z_{\ell})\right]\right\}.$$

$$(2.25)$$

Gavin P. Salam

$$\frac{\mathrm{d}Q^2}{Q^2}\alpha^2(Q^2)$$

Conference in honour of Paolo Nason, Milan, September 2022

Leptons in the proton: 2005.06477 (Buonocore, Nason, Tramontano, Zanderighi)

Gavin P. Salam

partonic luminosities with leptons and photons

Conclusions

As usual, when Paolo touches something, chances are it will come out fundamentally changed

(And then he takes it through to the end)

I look forward to many more such fundamental advances from you, Paolo!

Gavin P. Salam

Conference in honour of Paolo Nason, Milan, September 2022

. . . .