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parton distribution functions (PDFs)
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LHC physics 
needs PDFs in region 

~ 10-3 – 0.5 

Typically known with good 
precision ~1–3%
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parton distribution functions (PDFs)
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One exception:  

the photon distribution 
inside the proton 

(had up to 100% uncertainty)
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model-independent γ PDF fit (c. 2013)
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Figure 8: Comparison of the electron (red points), muon (blue points) and combined (black points) fiducial Born-
level cross sections, di↵erential in invariant mass m`` and absolute dilepton pseudorapidity separation |�⌘`` |. The
error bars represent the statistical uncertainty. The inner shaded band represents the systematic uncertainty on the
combined cross sections, and the outer shaded band represents the total measurement uncertainty (excluding the
luminosity uncertainty). The central panel shows the ratio of each measurement channel to the combined data, and
the lower panel shows the pull of the electron (red) and muon (blue) channel measurements with respect to the
combined data. 25
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Figure 12: The ratio of theoretical NNLO pQCD and NLO EW calculations to the combined double-di↵erential
cross section as a function of invariant mass m`` and absolute dilepton pseudorapidity separation |�⌘`` | at Born-
level within the fiducial region with statistical, systematic and total uncertainties, excluding the 1.9% uncertainty
on the luminosity. The calculations are shown for the MMHT14 PDF with and without the PI contribution on the
left side and for MMHT14, HERAPDF2.0, CT10, ABM12 and NNPDF3.0 on the right side. The uncertainty band
on the left side displays the combined 68% confidence level (CL) PDF and ↵S variation, the renormalisation and
factorisation scale uncertainties and the PI uncertainty.
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it mattered for di-lepton, di-boson, ttbar, EW higgs, etc.
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FIG. 7. (a) Prediction of the DY+PI dilepton spectrum for the 100 NNPDF replicas. (b) central value for the DY (black line)
and DY+PI (red line) dilepton spectrum from NNPDF including the PDF error band for the two cases. (c) Relative impact of
the PDF uncertainties with (magenta line) and without (blue line) the PI contribution. Standard acceptance cuts are applied
(|⌘l| < 2.5 and plT > 20 GeV).

on the central value. The methods are basically two. CTEQ and MRST apply the Hessian method that exploits
PDF eigenvalues [10, 43]. In this approach, the error is estimated from the standard deviation of a limited number
of central values coming from the di↵erence of paired PDF fits (order 20 pair of fits). The other procedure consists
in applying the replicas method and is adopted by the NNPDF collaboration. The error on the PDF central value
is computed as the standard deviation of a large set of replicas (order 100) that represent other possible fits of the
experimental data [29, 31]. For any observable, the central value is defined as the average of the di↵erent replicas and
its error is given by the standard deviation as summarized by the following equations

O0 = hOi =
1

N

NX

k=1

Ok, (III.1)

(�O)2 =
1

N

NX

k=1

(Ok �O0)
2
, (III.2)

where Ok (k = 1, ..., N) are the N replicas. Following this approach, we have evaluated the di↵erential cross section
for the hundred NNPDF replicas for both the DY and PI processes. The good quality of the quark (antiquark) fit
translates into a rather satisfactory prediction for the DY dilepton spectrum. This is shown in Fig. 5a where we plot
the dilepton invariant mass distribution for all the replicas. The result of the averaging procedure gives the central
value and the error band visible in Fig. 5b.
At the LHC RunII with 13 TeV, the PDF uncertainty coming from the large-x region is pushed towards higher dilepton
invariant masses, compared to RunI. More in detail, the relative PDF error grows above 10% for Mll � 4 TeV and
goes up sharply to 80% at the LHC potential edge around Mll ' 6 TeV, as shown in Fig.5c. The theoretical error on
the DY process initiated by a quark-antiquark interaction looks reasonably under control over a large portion of the

Accomando et al,  
1606.06646

di-lepton spectrum

~100%

photon-induced 
contribution & 

uncertainty 
dominate 

[NNPDF23]

−
e

+

γ γ

e

“normal” 
qqbar→ e+e–  
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Photon fusion

1512.05751;1512.05776;1512.08502;1601.00386;1601.00638;1601.01144;1601.01571;1601.01712;

1601.03772;1601.07167;1601.07187;1602.02380;1602.07574;1601.07774;1603.00287 ... more

  

The 750 GeV excess from  photon-photon The 750 GeV excess from  photon-photon 

and quark-quark processesand quark-quark processes

Tanumoy Mandal

In collaboration with U. Danielsson, R. Enberg, G. Ingelman

                       Based on arXiv:1601.00624

(Moriond QCD, March 20, 2016)
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Widely discussed photon-PDF estimates

11

elastic inelastic

LHAPDF public 
computer-readable 

form?

Gluck Pisano Reya 2002 dipole model ✘

MRST2004qed ✘ model ✓

CT14qed_inc dipole model  
(data-constrained) ✓

Martin Ryskin 2014 dipole 
(only electric part) model ✘

Harland-Lang, Khoze Ryskin 2016 dipole model ✘

NNPDF23qed (& NNPDF30qed) no separation; fit to data  

…

elastic part long known: Budnev, Ginzburg, Meledin & Serbo, Phys.Rept. 1974 



How do you do better? → Use electron–proton scattering

12

electron

proton

➤ Experiments have been going on 
for decades 

➤ Usually seen as photons from 
electron probing proton structure
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electron

proton

➤ Experiments have been going on 
for decades 

➤ Usually seen as photons from 
electron probing proton structure 

➤ But can be viewed as electron 
probing proton’s photonic field

In will often be useful to use FL instead of F1, where

FL(x,Q
2) =

✓
1 +

4m2
p
x
2

Q2

◆
F2(x,Q

2)� 2xF1(x,Q
2) . (25)

This gives us

d�

dxdQ2
=

4⇡↵2

xQ4

✓✓
1� y +

y
2

2

✓
1 + 2x2m

2
p

Q2

◆◆
F2(x,Q

2)�
y
2

2
FL(x,Q

2)

◆
. (26)

5 The ep ! LX process

We take a �e ! L interaction vertex of the form

V
µ =

ig

⇤
(�µ

�
⌫
� �

⌫
�
µ)q⌫ , (27)

where g2/4⇡ ⌘ ↵ and ⇤ is some scale to ensure correct dimensions for V µ and the mass of
the heavy lepton L is M . Throughout this section we will have a leptonic tensor

L
µ⌫ = �

g
2

⇤2
Tr (/k(/q�µ

� �
µ
/q)(/k � /q +M)(/q�⌫

� �
⌫
/q)) (28)

with the convention that the incoming electron momentum is k and the incoming photon
momentum is �q. Note that Lµ⌫ does not include any spin-averaging factors.

5.1 Born �e ! L process

The squared matrix element for the �e ! L process is then obtained by summing over
photon spins, �L

µ⌫
gµ⌫ ,

|M
2
| =

8(d� 2)g2M4

⇤2
(29)

To get the cross section we average over incoming spins, a factor of 1/(2d � 4), include a
flux factor 1/|4k.q| = 1/(2M2) as well as the phasespace, Eq. (46.12) from [?], i.e. a factor
2⇡�(ŝ�M

2):

�̂
(0)
�e!L+X

(ŝ) =
⇡

4M2
|M

2
|�(ŝ�M

2) = 16⇡2
↵
M

2

⇤2
�(ŝ�M

2) (30)

If we have a flux of photons from the proton given by dn�/dx = f�/p(x), where x is the
momentum fraction carried by the photon, then using s = 2xEpEk, we obtain

� =

Z
dx16⇡2

↵
M

2

⇤2
�(2xEpEk �M

2)f�/p(x) (31)

=

Z
dx

16⇡2
↵

⇤2
xf�/p(x)�(x�M

2
/s) =

16⇡2
↵

⇤2

M
2

s
f�/p

✓
M

2

s

◆
(32)

7

➤ Everything about unpolarized EM electron–proton interaction 
encoded in two “structure functions” F2(x,Q2) & FL(x,Q2)

How do you do better? → Use electron–proton scattering
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Most of the world uses Mathematica…
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Part A: getting the core formula
➤ expect photon distribution to be an integral over standard DIS structure functions, 

 and F2 FL

16

fγ/p(x, μ2) = ∫ dx′ ∫ dQ2 [c2(…)F2(x′ , Q2) + cL(…)FL(x′ , Q2)]
➤ Our task: figure out the coefficients  and  multiplying  and  c2(…) cL(…) F2 FL

Manohar, Nason, GPS & Zanderighi, arXiv:1607.04266 
(use of BSM inspired by Drees & Zeppenfeld, PRD39(1989)2536) 
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proton

neutral lepton l 
(massless)

heavy neutral lepton L  
(mass M)

2

e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X
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where q = k � k
0, Q

2 = �q
2, Wµ⌫(p, q) is the pro-
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tonic tensor. We define the physical QED coupling
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, e
2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M

2 � m
2
p, where

p
s is the centre-of-mass en-

ergy and mp the proton mass, one obtains
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where x = M
2
/s, Q2

min = x
2
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2
p/(1�z), Q2
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2
/(1�

z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as
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where in the MS factorisation scheme
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with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
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[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L =

[GE(Q2)]2
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�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
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2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q

2
> x
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p/(1 � x), which implies that the
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hadronic tensor,  
known in terms of F2 and FL

leptonic tensor,  
calculate with Feynman diag.k

k0

p

q

Heavy-lepton cross section in terms of structure functions
(use of BSM inspired by  

Drees & Zeppenfeld,  
PRD39(1989)2536) 
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MS photon distribution: 
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Cross section in terms of structure functions
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X

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and
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in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q
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we introduced the physical QED coupling
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where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M
2
/(s � m

2
p), mp is the proton mass,
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The same result in terms of parton distributions can
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where in the MS factorisation scheme
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

Quarks and gluons come in at higher orders

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
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2 and

xBj = Q
2
/(2pq), we have

� =
1

4p · k

Z
d
4
q

(2⇡)4q4
e
2
ph(q

2) [4⇡Wµ⌫(p, q)L
µ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M
2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q
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where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order
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s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
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where x = M
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where in the MS factorisation scheme
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
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alence of Eqs. (3) and (4) up to the orders considered, one
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)
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where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

Hard cross section driven by the photon distribution at LO
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�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.
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M2
�

2x2
Q

2
m

2
p

M4

◆
F2(x/z,Q

2)

+

✓
�z

2 � z
2
Q

2

2M2
+

z
2
Q

4

2M4

◆
FL(x/z,Q

2)

#
, (3)

where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
px

2
/Q

2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
2 � m

2
p, we have

Q
2
min = x

2
m

2
p/(1� z) and Q

2
max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c0

X

a

Z 1

x

dz

z
�̂a(z, µ

2)
M

2

zs
fa/p

✓
M

2

zs
, µ

2

◆
, (4)

where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)

2⇡

"
� 2 + 3z+

+ zp�q(z) ln
M

2(1� z)2

zµ2

#
X

i2{q,q̄}

e
2
i �ai + . . . , (5)

where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf�/p(x, µ
2) =

1

2⇡↵(µ2)

Z 1

x

dz

z

(Z µ2

1�z

x2m2
p

1�z

dQ
2

Q2
↵
2(Q2)

" 
zp�q(z) +

2x2
m

2
p

Q2

!
F2(x/z,Q

2)� z
2
FL

⇣
x

z
,Q

2
⌘#

� ↵
2(µ2)z2F2

⇣
x

z
, µ

2
⌘)

, (6)

where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

This includes terms 
  

α L (αs L)n 
α (αs L)n 

α2 L2 (αs L)n 
(L = ln μ2/Λ2) 

our 2017 work went one 
order higher (e.g. extra 

power of αs)

https://arxiv.org/abs/hep-ph/0306275
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Part B: finding F2 and FL data to put into the formula
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2

e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions,

where
p
s is the centre-of-mass energy.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X

� =
1

4p · k

Z
d
4
q

(2⇡)4q4
e
2
ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M
2) , (1)

where q = k � k
0, Q

2 = �q
2, Wµ⌫(p, q) =

�gµ⌫F1(x,Q2) + pµp⌫/(pq)F2(x,Q2) + O(qµ, q⌫) is the
proton hadronic tensor as defined in [30], and L

µ⌫(k, q) =
1
2 (e

2
ph(q

2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �

µ
⇤
(/k0 +M)

⇥
�
⌫
, /q
⇤⌘

is the lep-

tonic tensor. We define the physical QED coupling

e
2
ph(q

2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M

2
� m

2
p, where mp is the proton mass, one

obtains

� =
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where x = M
2
/s, Q2

min = x
2
m

2
p/(1�z), Q2

max = M
2
/(1�

z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as

� = c0

X

a

Z 1

x

dz

z
�̂a(z, µ

2)
M

2

zs
fa/p

✓
M

2

zs
, µ

2

◆
, (4)

where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)

2⇡

"
�2+3z� z

2+

zp�q(z)

✓
ln

M
2

µ2
+ ln

(1� z)2

z

◆#
e
2
q�aq + . . . , (5)

with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf�/p(x, µ
2) =

1

2⇡↵(µ2)

Z 1

x
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z

(Z µ2

1�z

Q2
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2
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↵
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� ↵
2(µ2)z2F2

⇣
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z
, µ

2
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, (6)

where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that
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8

relevant kinematic range is very insensitive to the value
of R. In fact even a 100% systematic uncertainty on R
gives only a few percent uncertainty on F2. The relative
total systematic error is given by:

δsys
F2

(x, Q2) =

[

δ2
sys(x, Q2) +

(

1 − ε

1 + εR

δR

1 + R

)2]1/2

.

(22)
The uncertainties of R given in Ref. [14] were propagated
to the resulting F2, and the actual systematic errors in-
troduced by δR were always lower than 3%.

The combined statistical and systematic precision of
the obtained structure function F2 is strongly depen-
dent on kinematics and the statistical errors vary from
0.2% up to 30% at the largest Q2 where statistics are
very limited. Fig. 6 shows a comparison between the
F2 data from CLAS and the other world data in the
Q2 = 0.775 GeV2 bin. The observed discrepancies with
the data from Ref. [7] which fill the large x region in
Fig. 6 are mostly within the systematic errors. Because
of the much smaller bin centering corrections in this Q2

region our data are in a better agreement with data pre-
viously measured at SLAC, given in Ref. [22], and the
parameterization of those from Ref. [21, 22]. The average
statistical uncertainty is about 5%; the systematic uncer-
tainties range from 2.5% up to 30%, with the mean value
estimated as 7.7% (see Table I). The values of F2(x, Q2)
determined using our data are tabulated elsewhere [10].

TABLE I: Range and average of systematic errors on F2.

Source of uncertainties Variation range Average
[%] [%]

Efficiency evaluation 1-9 4.3
e+e− pair production correction 0-3 0.3

Photoelectron correction 0.1-2.2 0.6
Radiative correction 1.5-20 3.2

Momentum correction 0.1-30 3.5
Uncertainty of R = σL

σT
0.5-5 2.4

Total 2.5-30 7.7

G. Moments of the Structure Function F2

As discussed in the introduction, the final goal of this
analysis is the evaluation of the Nachtmann moments of
the structure function F2. The total Nachtmann mo-
ments were computed as the sum of the elastic and in-
elastic moments:

Mn = M el
n + M in

n . (23)

The contribution originating from the elastic peak was
calculated according to the following expression from

x

F 2
(x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 6: Structure function F2(x,Q2) at Q2 = 0.775 GeV2:
stars represent experimental data obtained in the present
analysis with systematic errors indicated by the hatched
area, empty circles show data from previous experiments
[7, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] and
the solid line represents the parametrization from Ref. [14].

Ref. [14]:

M el
n =

(

2

1 + r

)n+1 3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

G2
E(Q2) + Q2

4M2 G2
M (Q2)

1 + Q2

4M2

, (24)

where the proton form factors G2
E(Q2) and G2

M (Q2) are
from Ref. [8] modified according the recently measured
data on GE/GM [9], as described in Ref. [10].

The evaluation of the inelastic moment M in
n involves

the computation at fixed Q2 of an integral over x. For
this purpose, in addition to the results obtained from the
CLAS data, world data on the structure function F2 from
Refs. [7, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44] and data on the inelastic cross section [21, 22, 45]
were used to reach an adequate coverage (see Fig. 1).
The integral over x was performed numerically using the
standard trapezoidal method TRAPER [46]. Data from
Ref. [47] were not included in the analysis due to their
inconsistency with other data sets as explained in detail
in Ref. [48], and data from Ref. [49, 50] were not included
due to the large experimental uncertainties.

The Q2-range from 0.05 to 3.75 (GeV/c)2 was divided
into ∆Q2 = 0.05 (GeV/c)2 bins. Then within each Q2

bin the world data were shifted to the central bin value
Q2

0, using the fit of FB
2 (x, Q2) from Ref. [14]. Here the fit

FB
2 (x, Q2) consists of two parts, a parametrization [21,

22] in the resonance region (W < 2.5 GeV), and a QCD-
like fit from Ref. [51] in the DIS (W > 2.5 GeV):

F2(x, Q2
0) =

F2(x, Q2)

FB
2 (x, Q2)

FB
2 (x, Q2

0) . (25)

Use fits from 
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Figure 9: HERMES data for the photon-proton cross section σp
L+T as a function of W 2, together

with world data and the results from the GD11-P fit (central curves) and its uncertainties (outer
curves), in bins of Q2. The data points denoted ’real photon’ are for photoproduction. Inner error
bars are statistical uncertainties, while outer error bars are total uncertainties calculated as the
sum in quadrature of all statistical and systematic uncertainties including normalization.
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July 2016: Finishing the paper
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photon PDF results
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γ from 
NNPDF23

➤ Model-independent uncertainty 
(NNPDF) was 50–100%



photon PDF results
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γ from 
LUXqed

➤ Model-independent uncertainty 
(NNPDF) was 50–100% 

➤ Goes down to O(1%) with 
LUXqed determination



di-lepton spectrum
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γγ component has few-% effect on Drell-Yan spectrum; negligible uncertainty



How bright is the proton? [γ momentum fraction]
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momentum (μ = 100 GeV)
gluon 46.8 ± 0.4%

up valence 18.2 ± 0.3%
down valence   7.5 ± 0.2%

light sea quarks 20.7 ± 0.4%
charm 4.0 ± 0.1%
bottom 2.5 ± 0.1%
photon 0.426 ± 0.003%

LUXqed_plus_PDF4LHC15_nnlo_100 
(1+107 members, symmhessian, errors 

 handled by LHAPDF out of the box,  
valid for μ > 10 GeV) 
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Where do we submit? → PRL
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[…]  
This work is interesting but it does not meet the 
criteria of innovation and impact expected for 
publication in Physical Review Letters. 
[…]

Luckily, referees B & C were more positive; paper eventually accepted…
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October 2016 — Getting CERN’s help for an image
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with thanks to CERN artist Daniel Dominguez for his patience with us! 
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Key subsequent developments
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PRL (Manohar, Nason, GPS, Zanderighi)

technical details (idem)

leptons in proton 
(Buonocuore, Nason,  
Tramontano, Zanderighi)

NNPD3.1luxQED (Bertone, Carrazza, Hartland, Rojo)

MMHT2015qed  
(Harland-Lang, Martin, Nathvani, Thorne)

pheno (idem + friends)

CT18lux/qed (Xie et al.)
MSHT20qed  
(Cridge, Harland-Lang,  
Martin, Thorne)
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Leptons in the proton: 2005.06477 (Buonocore, Nason, Tramontano, Zanderighi)
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and adding a term propotional to the square of the lepton mass. We thus obtain
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)
. (2.25)

This is our final expression for the lepton PDF. It can be evaluated numerically, similarly

to what was done recently for the photon PDF. We observe that, compared to the latter,

the lepton PDF requires one extra integration.

The structure functions F2 and FL are the only functions in formula (2.25) that are

not known analytically. They depend only upon the two variables xbj and Q
2. It is thus

possible to express formula (2.25) as an integral in xbj and Q
2, and a third variable, from

which the integrand depends analytically. In Appendix C we provide some details regarding

this simplification of the integrand. The integration in the third variable is thus simpler to

perform, either with numerical methods (e.g. using Gaussian integration) or analytically.

2.3.1 Subleading ↵2 terms

In our calculation of the lepton PDF we have kept some subleading terms, that are formally

of order ↵
2 (and thus contribute at the NNLO level) but are dominated by values of Q2

that are much lower than the high scale of the process (i.e. M
2, µ2

F or E
2
cm, that in our

calculation should be considered of the same order). The motivation for doing so is better

illustrated if we examine what we would need to extend the accuracy of our calculation

to include terms of order ↵
2. First of all, in the partonic formula, the NLO term should

be evaluated with an f� that is accurate at the NLO level. The only NLO term that we

dropped from f� is the MS subtraction term, that leads to a correction of order ↵2
F2, with

F2 evaluated at the scale µ
2
F. Next, in the calculation in terms of structure functions we

have dropped all non-singular terms at small Q2. These terms are dominated by values of

Q
2 of the order of the high scales and thus have the form of a structure function at large

scale times ↵
2. Furthermore, we have dropped terms having to do with the upper limit

of the Q
2 integration that also have the form ↵

2
F2/L. Finally, we should add the higher-

order graphs to the parton model formula. The only missing graph that can contribute

at NNLO is the collision of the massless scalar with a quark, producing a heavy lepton

– 10 –
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Figure 7: The lepton-gluon (lg, purple), photon-photon (��, red), lepton-up (lu, orange),

lepton-photon (l�, green), and lepton-lepton (ll, blue) luminosities at 13 TeV (left), 27 TeV

(center) and 100 TeV (right) in pp collisions (as defined in the text) in the case of the

electron, computed using the LUXlep set. Di↵erences with respect to the muon or tau case

cannot be appreciated on the scale of the plot.

coming from the low Q
2 region (see Fig. 18 of LUX2) that amounts to about 50% of the

total, and can only be computed with reliable accuracy by exploiting the electron scattering

data as we do.

6 Phenomenology

The precise determination of the leptonic content of the proton allows us to consider the

LHC also as either a (broad band beams) high energy lepton-(quark/gluon) or a lepton-

lepton collider, even including muons and taus in the initial state, which are beyond the

current collider accelerator technology. In the next subsections, after a brief illustration of

the associated luminosities, we present some physically motivated applications of lepton-

initiated processes at the LHC.

6.1 Lepton luminosities

We begin by showing in Fig. 7 the luminosities, defined as
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Conclusions
As usual, when Paolo touches something,  

chances are it will come out fundamentally changed 

(And then he takes it through to the end) 

I look forward to many more such fundamental advances from you, Paolo!
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