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(many showers use a large NC limit)
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4 Event selection and jet substructure extraction
Jets with pT > 700 GeV and |y| < 1.7 are selected for the measurement. For such a rapidity
selection requirement, both AK4 and AK8 jets are fully contained in the tracker acceptance. To
construct the primary Lund jet plane, we follow the prescription described in Section 1. The
anti-kT jet constituents are reclustered using the CA algorithm. While the original anti-kT jet is
clustered using neutral and charged particle-flow candidates, the Lund jet plane is calculated
using only its charged-particle constituents. Due to the approximate isospin symmetry of the
strong force, the salient features of the substructure of the jet do not depend on the electric
charge of the final-state hadrons. Although the charged-particle jet substructure is not infrared
and collinear safe, this choice does not affect the comparison to theoretical calculations of the
primary Lund jet plane density [12]. For the measurement of the Lund jet plane, the charged-
particle constituents are required to have pT > 1 GeV to further suppress the contributions
of residual pileup particles and to avoid the decrease in track reconstruction efficiency below
1 GeV. In Fig. 3, we show two distinct slices of the primary Lund jet plane density measured in
data. The detector-level predictions of HERWIG7 CH3 and PYTHIA8 CP5 are shown in the same
panel. Their detector-level predictions envelop the measured distribution.
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Figure 3: Detector-level distributions of data and Monte Carlo simulated events generated with
PYTHIA8 CP5 and HERWIG7 CH3. The lower panels show the ratio of the predictions with
respect to the data. Only statistical uncertainties are included here.

Are showers good enough?

➤ showers do an amazing job on 
many observables  

➤ but various places see 10–30% 
discrepancies between showers 
and data 

➤ feeds into many analyses (e.g. via 
jet-energy scale) 

➤ as machine learning makes use of 
ever more information in jets & 
whole event, we want 
simulations to get it right

7

Lund Plane  
(Negro & Rossini talks; also ATLAS & ALICE)

HERWIG7 CH3

PYTHIA8 CP5

detector level
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We want to design guaranteed NLL showers
A Matrix Element condition 

➤ correctly reproduce -parton tree-level matrix element for arbitrary configurations, 
so long as all emissions well separated in the Lund diagram 

➤ supplement with unitarity, 2-loop running coupling & cusp anomalous dimension 

Resummation condition: reproduce NLL results for all standard resummations 

➤ global event shapes  
➤ non-global observables  
➤ fragmentation functions 
➤ multiplicities 
➤ … 

n

8

Dasgupta, Dreyer, Hamilton, Monni, GPS ’18 
ibid + Soyez ‘20
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1. Recoil: the core of any shower
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qq̄

1~
Dipole showers conserve momentum at each step. Traditional dipole-local recoil:

pendix A), the kinematic mappings (Appendix B), the analytic expectations for our colour

tests (Appendix C) and the derivation of the spin branching amplitudes (Appendix D).

The validation of our approach at all-orders across many observables and a presentation of

the associated all-order testing methodology are to be found in a separate publication [1].

2 Basics of hadron-collision dipole showers

In this section we will highlight common features of dipole showers and formulate a generic

standard dipole shower, which will be used as a convenient reference for a LL-accurate

shower throughout this work and our companion article [1]. We will concentrate on colour-

singlet production in proton-proton collisions, specifically qq̄ ! Z and gg ! H, with a

hadron-hadron centre-of-mass energy
p
s and a colour-singlet Born four-momentum Q

µ.

2.1 Generic formulation of a hadron-collider shower

Standard dipole showers and the PanScales hadron-collider showers that we develop later

in Section 4 have a number of characteristics in common. These include the final and

initial-state splitting probabilities, as well as the generic structure of recoil for emission of

a parton from a dipole. In this work, all partons are considered to be massless and we will

often refer to the colour singlet as the “hard system”.

First, we consider a final-state parent parton ı̃ that radiates a collinear emission k. The

post-branching momentum of the parent is denoted by i. The phase-space of the emission

k is parameterised by its transverse momentum k?, its longitudinal momentum fraction

z (relative to the pre-branching parent) and its azimuthal angle '. In the collinear limit

(✓ik ⌧ 1), the di↵erential branching probability then reads

epi
pk ' zepi

pi ' (1� z)epi

! dPFS
ı̃!ik

=
↵s(k2?)

2⇡

dk2?
k
2
?

dz

z

d'

2⇡
N

sym
ik

[zPı̃!ik(z)] ,

(2.1)

with ↵s the strong coupling and N
sym
ik

a symmetry factor that is equal to 1/2 for g !

gg splittings, and 1 otherwise. We use symbols with a tilde to indicate pre-branching

partons and their momenta, and symbols without any decoration to indicate post-branching

partons. The DGLAP splitting functions Pı̃!ik are provided in Appendix A. A well-known

feature of Eq. (2.1) is its singular behaviour in the soft (z ! 0) collinear limit for flavour-

conserving emissions (i.e. Pg!gg and Pq!qg), and in the hard (z ⇠ 1) collinear limit for

every type of emission. The soft and collinear singularities compensate the smallness of

↵s in the corresponding regions of phase space, resulting in the large logarithms that the

shower resums.

In hadronic collisions, final-state radiation is to be supplemented with emissions from

the incoming partons. Over three decades ago, it was realised that a backwards evolution

– 4 –
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Figure 3: (a) Illustration of the modification of the transverse momentum (upper panel)

and rapidity (lower panel) of gluon 1 after emission of gluon 2, shown as a function of

the rapidity of gluon 2. Prior to emission of gluon 2, gluon 1 originally has a rapidity

⌘g1 ' 2.3 and transverse momentum ep?,g1 = v1 = 10�6
Q (v1 = 10�6

Q and 1 � z1 =

10�5). Gluon 2 has v2 = 1
2v1 and is emitted parallel in azimuth to gluon 1. To help

guide the eye, four regions of gluon 2 rapidity are labelled according to the identity of the

parton that branches and that of the spectator. The results have been obtained using a

numerical implementation of the kinematic maps of section 2. The transverse momentum

shifts in (a) can be reinterpreted in terms of the e↵ect they have on the e↵ective matrix

element for double-soft emission. Plot (b) shows the ratio of this e↵ective matrix element

to the true one, as a function of the azimuthal angle between the two emissions and their

transverse-momentum ratio (in a specific “diamond” region of widely separated rapidities,

cf. Appendix A). For simplicity, the matrix-element ratio is given in the large-Nc limit.

that this issue with subleading Nc terms will also a↵ect those double logarithms. We will

investigate this in section 4.1.

We should note that issues with the attribution of colour factors beyond leading NC in

dipole showers have been highlighted in a range of previous work, e.g. Refs. [36, 53, 79, 80].

Our analysis in this subsection is close in particular to that of Ref. [53]. We also note

that approaches to obtain the correct subleading colour factor for at least the main soft-

collinear divergences have existed for some time. The classification that is implied by

angular ordering (see also Ref. [52]) provides a guide in this direction, as was articulated

for a dipole shower in Ref. [53] and found to be relevant for particle multiplicities at LHC

energies [54]. Another proposal is that of Ref. [79].

– 15 –

ratio of effective shower 
matrix element to exact one

Shower initially generated matrix element for  
particle , whose momentum differs (by ~ 50%)  
from final particle 1.  

Matrix element is incorrect wrt final momentum 1. 
First observed: Andersson, Gustafson, Sjogren ’92 
Closely related effect present for Z pt: Nagy & Soper 0912.4534 
Impact on log accuracy across many observables: Dasgupta, Dreyer, Hamilton, Monni, GPS, 1805.09327 

1̃

pt1

pt2

ΔΦ12

|y1 − y2 | ≫ 1

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/1805.09327
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design principle for new showers: 

recoil & other shower design should respect  
absence of cross-talk between disparate scales 

(e.g. angles), i.e. QCD factorisation

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/1805.09327
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R&D for UPGRADE 
Dasgupta, El Menoufi, 2109.07496 

Medves, Soto Ontoso, Soyez, 2205.02861, 2212.05076  
Banfi, Dreyer, Monni, 2104.06416,  2111.02413

https://arxiv.org/abs/2109.07496
https://arxiv.org/abs/2205.02861
https://arxiv.org/abs/2212.05076
https://arxiv.org/abs/2104.06416
https://arxiv.org/abs/2111.02413
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PanLocal 

 ordered 

Recoil 
: local 

+: local 
–: local 

Dipole partition 
event CoM

kt θ

⊥

PanGlobal 

 or  ordered 

Recoil 
: global 

+: local 
–:  local 

Dipole partition 
event CoM

kt kt θ

⊥

e+e–: Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez, 
2002.11114; pp: van Beekveld, Ferrario Ravasio, GPS, 

Soto Ontoso, Soyez, Verheyen, 2205.02237; 
& pp tests, ibid + Hamilton: 2207.09467

Colour 

nested ordered 
double soft 

(NODS) 

Designed to 
ensure LL are 

full colour 
(also gets many 

NLL at full 
colour)

Hamilton, Medves, GPS, 
Scyboz, Soyez, 2011.10054

Spin 

for correct 
azimuthal 

structure in 
collinear and 

soft→collinear 

[Collins-Knowles 
extended to soft 

sector]

Karlberg, GPS, Scyboz, 
Verheyen, 2011.10054; 

ibid + Hamilton, 2111.01161
& pp extensions: van Beekveld et al, 2205.02237
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https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/2011.10054
https://arxiv.org/abs/2011.10054
https://arxiv.org/abs/2111.01161
https://arxiv.org/abs/2205.02237
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Figure 11: NLL global event-shape tests of the segment and NODS colour schemes,

showing NLL agreement for � = 1/2 PanScales showers and for the � = 0 PanGlobal

shower. In contrast to the NLL-LC tests of Ref. [12], the Pythia 8 �obs > 0 results here

are coloured green rather than amber, because our colour code does not incorporate the

information about failure of exponentiation in fixed-order tests, tests that we have not

explicitly repeated for this paper.

of the slice [22, 59] (see also Ref. [60]). The full-colour resummation for such observables is

sensitive to arbitrarily complex colour correlators, both in the real emissions and the virtual

corrections, which need to be evaluated at amplitude level. The resulting subleading-

colour single-logarithmic corrections go far beyond the scope of the colour schemes that we

introduced in sections 3 and 4. In particular, we expect the segment scheme to be correct

at full colour only up to order ↵sL, and the NODS scheme to be correct at full colour up to

order ↵2
sL

2. Recall that leading-colour all-order single-logarithmic accuracy for PanScales

showers was demonstrated in Ref. [12].

– 38 –

(a) (b)

Figure 12: NLL (single-logarithmic) tests for a non-global observable. (a) Fraction of

events whose energy flow in a central slice of rapidity is less than e�|L|Q, shown in the

limit ↵s ! 0 for fixed ↵sL, as a function of ⌧(↵s, L), defined in Eq. (7.10). Our results

are shown for the PanScales antenna shower with �PS = 1/2, with three di↵erent colour

schemes: leading-Nc (with CF = CA/2 = 3/2), segment and NODS. They are compared

to the full-colour Hatta-Ueda (“finite-Nc (exact)”) result [28]. (b) Ratio of the same set

of results to the NODS result, illustrating apparent consistency of the segment and NODS

schemes with the Hatta-Ueda result, to within its statistical uncertainty. The agreement is

potentially surprising given that our schemes do not achieve NLL-FC (↵n
sL

n) accuracy for

non-global observables. The thin band for our results represents the statistical uncertainty

added in quadrature to estimates of systematics obtained using the di↵erence between our

default runs (⌘max = 10 and ↵s = 0.7⇥10�8) and runs with ⌘max = 8 and ↵s = 1.4⇥10�8.

Our results for other showers with the same colour schemes are very similar, as is to be

expected.

methods. Recall that those methods are not expected to work beyond order � and �2

respectively. However in Fig. 12 (left) they are indistinguishable from the full-Nc Hatta-

Ueda result. To further probe this observation, the right hand plot shows ratios to a

reference, which we take to be the PanLocal-antenna � = 1/2 NODS (the specific choice

is largely immaterial, since our aim is to compare di↵erent predictions on this ratio plot).

One sees that the di↵erence between the full-Nc Hatta-Ueda result and our leading-Nc

result is about 23% at ⌧ = 0.4. Remarkably, both our segment and NODS methods seem

to be in good agreement with the Hatta-Ueda result across the full range of ⌧ : the whole

range is within two standard deviations of the Hatta-Ueda result, and in much of the range

the agreement is within one standard deviation. Some caution is needed in interpreting

these results: firstly, they correspond to one specific choice of slice size. Secondly, when

using a finite-resolution angular grid (as in the Hatta-Ueda approach), there are inevitably

original paper and providing us with the corresponding numerical results.
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(a) (b)

Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.

It is useful to recall the structure of the standard b-space result for the resummation

of the transverse-momentum distribution [15, 59, 60],

d⌃

dp2
tX

=

Z 1

0

db

2
bJ0(bptX)⌃V (b0/b) , (5.1)

with b0 = 2e��E , ⌃V the b-space resummed distribution, and J0 the Bessel function of

the first kind and order 0. Observe that for ptX ! 0 the result tends to a non-zero

constant, whose value can be straightforwardly obtained by replacing J0(bptX) ! 1 in

Eq. (5.1). Fig. 6a shows the small-ptX behaviour of the distribution for Z production, in

four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend to

a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles

tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after

the first emission, the event consists of two IF dipoles, and from that point onwards, no

further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to

be small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.13

13For processes such as gg ! H with two II dipoles, one does recover the correct power-dependence of

the scaling (i.e. the plateau), because the Higgs recoil induced by an emission o↵ one II dipole can have a

vector cancellation with recoil induced by an emission o↵ the other II dipole. However the normalisation

of the plateau is still expected to be wrong, as is the whole shape of the distribution for ↵sL ⇠ 1.
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Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when the shower

passed both the numerical NLL tests and the fixed-order recoil tests. The ↵s ! 0 result is

obtained by quadratically extrapolating the shower results at ↵s = 0.00625, 0.003125 and

0.0015625, and includes a systematic error that is evaluated as the change in the ↵s ! 0

extrapolation when one uses ↵s = 0.0125 instead of ↵s = 0.003125. The showers include a

dynamic cuto↵ � = 18, which functions as discussed in our earlier e+e� tests [8, 11].

and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

Ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-

mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It

has wide relevance for LHC phenomenology, and for example its understanding is critical

forW mass extractions [40–42].10 It is also widely used in matching showers and fixed-order

calculations [44, 54–56].

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-

singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-

tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum

distribution for the reweighted shower, it will not in general correctly account for correlations between the

colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such

questions to future, more phenomenological work.
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Figure 8: Extrapolation of Nshower�NNDL
NNDL�NDL

to ↵s = 0 at a fixed value of ⇠ = ↵sL2 for all

showers, two di↵erent energies (
p
s = 5mX , left, and

p
s = 1000mX , right), and the two

processes under study, i.e. pp ! Z and pp ! H.

⌃ rather than ln⌃. The analogue of Eq. (4.1) for such non-exponentiating observables is

⌃(L) = h1(↵sL
2) +

p
↵sh2(↵sL

2) + . . . , (7.1)

where the NkDL function ↵k/2
s hk+1(↵sL2) resums terms of ↵n

sL
2n�k. That is, the function

h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic

(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be

resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower

transverse momentum cuto↵ (for particle multiplicities) or a jet algorithm transverse mo-

mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up

to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower

context, up to NDL, it applies equally well to the number of particles in the event (Nshower)

when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in Eq. (7.1), we compute the following ratio

Nshower �NNDL

NNDL �NDL
, (7.2)

which vanishes in the ↵s ! 0 limit if the shower is correct at NDL accuracy.16 The result

of computing Eq. (7.2) with all showers, at two di↵erent energies and for two di↵erent hard

processes (pp ! Z and pp ! H) is shown in Fig. 8. We observe that all showers are con-

sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for di↵erent values of kt,cut, i.e. ln kt,cut = {�31.25,�62.5,�125,�1000},

keeping ⇠ ⌘ ↵sL
2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial

extrapolation down to ↵s ! 0. The error that we quote on Nshower is purely statistical.
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Figure 17: All-order comparison of the toy shower and di↵erent PanScales showers, for �⇤
! qq̄

events. The two observables shown are the azimuthal angle, � 12, between a primary and
secondary splitting planes in Lund declustering, and the di↵erence in angle � between the
(ij)k and ij planes in the EEEC (Eq. (12)). The results are obtained in the limit ↵s ! 0 for
fixed � = ↵sL = �0.5. For the Lund declustering � 12 we consider events with kt,2/Q > e

�|L|

and for the EEEC � we consider events with ✓S > e
�|L|.
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Figure 9: The ptZ distribution as predicted in a variety of parton showers. The plots use

a semi-physical setup, for a pp centre-of-mass energy 13.6 TeV. The Born events involve

dd̄ scattering with a Z rapidity of zero, and the showers use 5-flavour toy PDFs defined

through the initial condition of Eq. (A.6) at a scale of 0.5 GeV. The top panel shows the ptZ
distribution with the PanGlobal (�ps = 0) shower and the remaining panels show the ratio

to that distribution for each of several showers. For each shower, the band corresponds to

the envelope of the renormalisation scale (xr) variations (dashed lines) and factorisation

scale (xf) variations (dotted lines), as described in the text.
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Logarithmic accuracy and NLO matching
➤ Proof of concept explored for 

 @ NLO 

➤ some matching schemes supplement 
shower with pure , e.g. MC@NLO, 
KrKNLO, MAcNLOPS:  
these seem straightforward 

➤ in other schemes, first emission is 
generated by an external program 
(POWHEG, MINNLO, Geneva, etc.): 
these need more care

e+e− → 2 jets

𝒪(αs)

18

Hamilton, Karlberg, GPS, 
Scyboz, Verheyen, 2301.09645

log 1/θ

log kt

Lund plane

HEG contour
shower contour

double  
counting

cf also Corke, Sjostrand, 1003.2384 

https://arxiv.org/abs/2301.09645
https://arxiv.org/abs/1003.2384


Figure 9: Thrust (left), Cambridge ln y23 (middle) and SoftDrop ln kt/Q (right) distri-

butions, unmatched (red) and matched (blue). They are obtained with a LL shower (our

PanScales implementation of the Pythia 8 shower (PSPythia 8, top row)) and two NLL

showers: PanGlobal with �ps = 0 (middle row) and PanLocal �ps =
1
2 (bottom row). The

last row also shows the impact of HEG-style matching without the veto discussed in sec-

tion 3.3. Dotted lines show xhard variation, while dashed lines show xr variations.

The top row of Fig. 9 shows results for our implementation of the Pythia 8 shower.

Recall that since this shower is LL rather than NLL we do not include the scale compen-

sation terms of Eq. (5.1) when varying the renormalisation scale (neither in the shower
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Matching & log-accuracy
➤ Done correctly, matching augments 

accuracy of shower from NLL to  
NLL + NNDL (for event shapes) 

➤ Done wrongly, it breaks exponentiation 
structure of shower (impact depends on 
observable) 

➤ example with significant impact is 
SoftDrop transverse momentum  
(i.e. jet substructure)

19

unmatched

wrongly-matched

correctly matched

for standard dipole showers with observables such as the thrust. Below, when we summarise

matched shower results together with their logarithmic accuracy, we will use the notation

NLL, to remind the reader that the formal NLL accuracy has been lost. One subtlety,

however, is that the di↵erence between Eqs. (3.6b) and (3.4b) is always of relative order

↵s. This has the consequence that in numerical NLL tests with ↵s ! 0 for fixed ↵sL, this

di↵erence would mimic a NNLL term, i.e. NLL accuracy would appear to be preserved

despite the presence of spurious super-leading logarithms.

There are, nevertheless, observables that see a larger relative e↵ect. One example

is the invariant mass or transverse momentum of the first SoftDrop splitting when using

�SD = 0 [47, 48]. The special characteristic of this observable is that it is not a standard

global event shape, and its resummation does not have double-logarithmic terms, i.e. it

starts from g2 in Eq. (1.1). In the fixed-coupling approximation that we have e↵ectively

used in this section, the SD cross section has the following single-logarithmic structure,

⌃SD(L) = e↵̄cL , (3.12)

where c is a constant that depends on SoftDrop’s zcut parameter, which we take to be

small. Using the same strategy as above, one can explore how Eq. (3.12) is modified in

HEG/shower combinations with a hard-collinear mismatch. Keeping �ps = 0 for simplicity,

one finds

⌃SD(L) = e↵̄cL�↵̄� + e�↵̄L
2
(1� e�↵̄�) , (3.13)

where the coe�cient � that parameterises the impact of the HEG/shower contour mis-

match now depends on zcut. As with Eq. (3.11), this generates spurious ↵n
sL

2n�2 terms. If

we examine the derivative of ⌃SD (as we will do below in our phenomenology plots),

@L⌃SD(L) = ↵̄c e↵̄cL�↵̄�
� 2↵̄Le�↵̄L

2
(1� e�↵̄�) , (3.14)

we observe that there is a region, L ⇠ 1/
p
↵s, where the second term is suppressed relative

to the first only by
p
↵s. Thus in this region, the impact of the HEG/shower mismatch is

parametrically larger than the relative O (↵s) correction seen in Eq. (3.6b).

3.2 Additional subtleties for gluon splitting

The purpose of this section is to discuss an issue that can arise even when we have a

HEG/shower combination whose kinematic contours (for a fixed value of the evolution

variable) are aligned not just in the soft-collinear region, but for any single-emission phase-

space point that is soft and/or collinear. The issue is connected with the fact that the

g ! gg splitting function

1

2!
Pgg(⇣) = CA

✓
⇣

1� ⇣
+

1� ⇣

⇣
+ ⇣(1� ⇣)

◆
, (3.15)

has two soft divergences, one for ⇣ ! 0 and the other for ⇣ ! 1. This is a consequence of

the inherent symmetry ⇣ $ (1 � ⇣), which stems from the fact that g ! gg corresponds

to splitting to two identical particles (hence also the 1/2! factor). However, dipole showers

break this symmetry, through the concept of an emitting particle (the “emitter”) and a

– 12 –
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First comparisons to data
➤ we’re starting with  data 

➤ aiming to understand nature of residual 
perturbative shower uncertainties 

➤ and interplay with non-perturbative 
tuning 

➤ plot includes preliminary treatment of 
heavy-quark masses 

Medium term: making proper use of LEP 
data for tuning almost certainly requires 
NLO 3-jet accuracy.
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Conclusions
➤ PanScales is first validated NLL shower (with spin & full-colour@LL/NLL) 

➤ benefits of LL → NLL include reduced uncertainties  
(and ability to reliably estimate uncertainties) 

➤ multi-differential soft/collinear observables have enhanced sensitivity to NLL 

➤ NLL is foundation for yet higher accuracies 

➤ Matching is one of the next frontiers 

➤ first results with NLO   

➤ for realistic applications we also need massive quarks and tuning 

➤ We’re on the path towards public code 

➤ exact timeline still fuzzy!

e+e− → 2 jets
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(a) (b)

Figure 2: Schematic illustration of the issue associated with gluon asymmetrisation. (a)

Contours on the Lund plane, in the PanLocal family of showers, highlighting the fact that a

given physical point X in the Lund plane (highlighted with a red cross) can come from two

di↵erent values of v. The shading of the green curves represents the variation in radiation

intensity along the contour. (b) Density plot, at each point in the Lund plane, representing

schematically the fraction of the emission intensity at that point that has been excluded

once the HEG has reached a given v value (v�) without emitting, and an illustration that

as the shower continues there may still be phase-space points (such as that marked with

a cross) where the Sudakov has only been partially accounted for. The implications are

discussed in the text.

radiated particle. In particular, in order to help reproduce the correct pattern of large-

angle soft radiation, dipole showers de-symmetrise the splitting function so that there is a

divergence only when the radiated gluon becomes soft. For example the PanScales showers

use
1

2!
P asym
gg (⇣) = CA


1 + ⇣3

1� ⇣
+ (2⇣ � 1)wgg

�
, (3.16)

where the choice of the wgg parameter fixes arbitrariness that arises in partitioning the finite

part of the splitting function. It is straightforward to verify that P asym
gg (⇣)+P asym

gg (1�⇣) =

2Pgg(⇣).

The hard matrix element generated by the HEG can be de-symmetrised similarly. The

POWHEG-BOX code follows the FKS procedure [40], which introduces so-called S-functions

that are used to partition the soft and collinear singularities. The de-symmetrisation

discussed above is handled by an additional multiplicative factor h(⇣), cf. Eqs. (2.76)–(2.77)

of Ref. [3], with ⇣ for an ı̃ ! ik splitting defined as Ei/(Ei +Ek). One can implement the

scheme of Eq. (3.16) by setting

h(⇣) =
P asym
gg (⇣)

Pgg(⇣)
. (3.17)

The reason that the de-symmetrisation matters is that in many cases the kinematic map

is not symmetric under ⇣ $ (1 � ⇣). This can be seen in Eqs. (3.8), where the only

combination that is symmetric is the PanLocal map for �ps = 0 (this, however, is not NLL

– 13 –



Moriond QCD, March 2023Gavin P. Salam 24Figure 11: Analogue of Fig. 10 for the kt/Q distribution of the splitting from the SoftDrop

(zcut = 0.25,�SD = 0) procedure, in a bin �3.1 < ln kt/Q < �3.0.

region. In contrast, with matching methods such as POWHEG that take responsibility

for generating the hardest emission, an extra element is needed, which is to ensure that

the hardest-emission generator and shower align in their generation of phase space in the

full soft and/or collinear regions. Failing to account for this prevents the HEG/shower

combination from attaining NNDL accuracy. Furthermore, it subtly compromises NLL

accuracy, generating spurious super-leading logarithms, Eq. (3.11), that resum in such a

way, Eq. (3.6b), as to vanish in standard numerical NLL accuracy global event-shape tests

(but not necessarily for single logarithmic observables, such as SoftDrop with �SD = 0).

In this paper we used the (standard) approach of vetoing shower steps in order to avoid

double-counting phase space already generated with the HEG. However, thinking forward

to possible approaches to achieving yet higher logarithmic accuracy, it is likely to be ad-

vantageous to consider designing HEG tools such that they have the freedom to mimic the

lowest order soft/collinear phase-space generation of any given shower.

A related and more subtle issue occurs when a given phase-space point can be reached

from more than one value of the HEG or shower ordering variable. In our study, this issue

arose in the context of de-symmetrisation of gluon splitting functions in the hard-collinear

region, cf. section 3.2. However, we expect it to be relevant more generally also in processes
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Matching — augment from NLL to NLL + NNDL?
Two ways of counting logarithms 

 (relevant when ) 

 (relevant when ) 

ln Σ = αn
s Ln+1

LL

+ αn
s Ln

⏟
NLL

+ αn
s Ln−1

NNLL

+ … αsL ∼ 1

Σ = αn
s L2n

⏟
DL

+ αn
s L2n−1

NDL

+ αn
s L2n−2

NNDL

+ … αsL2 ∼ 1
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