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Why not just plain (N)NLO?
incredibly powerful, get scattering cross-sections from first 

few orders of perturbative expansion in the strong coupling  

 

αs

σ = σ0 + αsσ1 + α2
s σ2 + ⋯
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What kind of contributions do we get at NLO?
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What a NLO calculation gives you (here, Event2, )e+e− → qq̄

7

LO (2-particle) tree-level event
 with weight     1.00000
 px, py, pz, E =   -1.32   -1.38  -49.96   50.00
 px, py, pz, E =    1.32    1.38   49.96   50.00

NLO (3-particle) tree-level event
 with weight   893.22103, multiplying (alphas/2pi)
 px, py, pz, E =   -1.60   -1.75  -49.87   49.93
 px, py, pz, E =    1.31    1.36   49.25   49.29
 px, py, pz, E =    0.30    0.39    0.62    0.79       

NLO (2-particle) virtual subtraction event
 with weight   -84.49299, multiplying (alphas/2pi)
 px, py, pz, E =   -1.32   -1.38  -49.96   50.00
 px, py, pz, E =    1.32    1.38   49.96   50.00

NLO (2-particle) virtual subtraction event
 with weight  -808.58646, multiplying (alphas/2pi)
 px, py, pz, E =   -1.61   -1.75  -49.94   50.00
 px, py, pz, E =    1.61    1.75   49.94   50.00

NLO (2-particle) virtual finite event
 with weight     2.66667, multiplying (alphas/2pi)
 px, py, pz, E =   -1.32   -1.38  -49.96   50.00
 px, py, pz, E =    1.32    1.38   49.96   50.00
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event weights are ~ probabilities
➤ real life doesn’t have negative probabilities 
➤ real life doesn’t have (near-)divergent probabilities 
➤ you can evade these problems in perturbation theory if you ask very limited 

kinds of questions, i.e. nearly always summing real & virtual divergences 
(infrared safe observable, single momentum scale)  

➤ but experiments don’t limit themselves to those kinds of questions

*

8

 though there can still be nasty surprises, cf. Chen et al 2102.07607, GPS & Slade 2106.08329*

http://arxiv.org/abs/2102.07607
https://arxiv.org/abs/2106.08329
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Key innovation of 2002–’04:  
correct or replace 
first step so that perturbative 
expansion of hard process + 
parton-shower is equivalent to the 
true NLO. 

Frixione & Webber: MC@NLO 
hep-ph/0204244 

Nason: POWHEG 
hep-ph/0409146 

[>7500 citations; these methods 
used also in Sherpa, Herwig]

https://arxiv.org/abs/hep-ph/0204244
https://arxiv.org/abs/hep-ph/0409146
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Key features of MC@NLO and POWHEG events
➤ MC@NLO and POWHEG methods, supplemented with parton showers + 

hadronisation models, provide NLO-accurate realistic hadron-level events 

➤ they avoid the problem of (near) divergent event weights 

➤ instead the event weights are just ±1  

This is a big advantage over “pure” NLO 

But the event sample doesn’t quite look like a true physical event sample, because 
there are still some negative weights

10
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Are negative weights a problem?

Given fraction  of negative-weight events, to reach the same statistical error as for  
unit positive-weight events, you need to generate a larger number of events, 

 

E.g. for this doubles the required number of events.

f N

N
(1 − 2 f )2

f = 15 %

11
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NLO state of the art [POWHEG]

12

More complex 
processes tend to have  

higher fractions of 
negative weights. 

Mitigation options 
(e.g. folding, Nason 

0709.2085) often trade 
off negative weight 

fraction v. generation 
time. 

Problem usually worse 
for NNLO event 

generationfraction of negative-weight events

time 
per 
event 
(s)

https://arxiv.org/abs/0709.2085
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NLO state of the art [MG5_aMC — MC@NLO method]

13

Frederix & Torrielli 
2310.04160

wall times for 1 
million events 
on a 12-core i7-8700K 
@ 3.7 GHz desktop 
machine

https://arxiv.org/abs/2310.04160
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Some LHC experiments’ statements on negative weights and machine learning
➤ ATLAS 2211.01136: “To avoid the use of negative weights present in the nominal 

NLO sample in the training of the multivariate discriminant used to separate SM  
events from background […], a sample was produced with similar generator 
settings, but at LO.”  

➤ CMS 2411.03023: “However, the binary cross-entropy given by Eq. (2), can become 
negatively unbounded for negative event weights, making the classification task 
potentially impossible” 

➤ ATLAS 2412.15123: “Since XGBoost [ML framework] cannot handle negative-
weight events, the absolute value of each event weight is used.”

tt̄tt̄

14

http://arxiv.org/abs/2211.01136
http://arxiv.org/abs/2411.03023
http://arxiv.org/abs/2412.15123
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other work trying to reduce negative weight fractions (+ further refs below)

E.g. “We have demonstrated that the fraction of negative event weights in existing large high-multiplicity 
samples can be reduced by more than an order of magnitude, whilst preserving predictions for observables 
within statistical uncertainties.” [2303.15246]

15
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are we doing our (perturbative QFT) job 
properly if we can’t deliver guaranteed 

positive predictions?

16
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3 stages of NLO event generation

1. Generate “Born” event, e.g. , with an overall NLO-correct normalisation 

2. Generate real radiation, e.g. extra gluon, with correct real matrix element 

3. Let a parton shower generate all remaining perturbative emission

qq̄ → Z

17
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17

NLO event 
normalisation

Generation of first 
emission

MC@NLO can be negative can be negative

POWHEG* can be negative always positive

* and also the KrkNLO [Jadach et al 1503.06849] and MAcNLOPS [Nason & GPS, 2111.03553] methods

𝒪(αs)1 + 𝒪(αs)

https://arxiv.org/abs/1503.06849
https://arxiv.org/abs/2111.03553
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2 Adaptations of existing NLO approaches107

In this section we will start with an overview of NLO matching and associated notation. We108

will then briefly examine how we handle the matching of real radiation, using a multiplicative109

method that all other parts of this paper rely on. We then consider two alternative ways for the110

generation of the Born event with the NLO normalisation: one adapts the numerical approach111

of the POWHEG-BOX [2–4] framework to the PanScales showers, the other, specific to DIS, uses an112

analytic Projection-to-Born (P2B) methodology [38, 39].113

2.1 Overview and notation114

The strategies we follow in this work all belong to the multiplicative matching category in which115

the cross section for the event, starting from a given Born phase-space point !B, can be written116

as [2]117

dωmult = B̄(!B)

[
S(vps,!B)→

R(!B,!rad)

B0(!B)
d!Bd!rad

]
→ Ips(v

ps,!B,!rad) . (2.1)

Schematically, this formula depends on three main ingredients. The term in square brackets in118

Eq. (2.1) describes the generation of the first emission parameterised by !rad, which is associated119

with a value of the parton shower (PS) ordering variable vps. This depends on the Sudakov form120

factor, S(vps,!B), given by121

S(vps,!B) = exp

[
↑

∫

v>vps

R(!B,!rad)

B0(!B)
d!rad

]
, (2.2)

which we note is computed using the full matrix element R(!), as opposed to the shower’s ap-122

proximate matrix element. We elaborate more on this term in Section 2.2. Another ingredient is123

Ips(vps,!) which denotes the subsequent iterations of the parton shower evolution, starting from124

vps. Lastly, the normalisation factor B̄(!B) is given at NLO by125

B̄(!B) = B0(!B) + V (!B) +

∫
R(!B,!rad) d!rad

︸ ︷︷ ︸
relative order ωs

, (2.3)

with B0(!B) the Born matrix element, V (!B) the 1-loop contribution and R(!B,!rad) the real126

matrix element. The correct NLO cross section is therefore obtained upon integration over the127

Born phase space128

ω =

∫
B̄(!B)d!B . (2.4)

When generating events according to Eq. (2.3) one might end up in a situation in which the weight129

is negative thus reducing the e”ciency of the event generation. Sources for these negative weights130

are discussed below in Section 3.1.131

2.2 Treatment of the real radiation132

The shower-branching kinematic variables are the dimensionful ordering variable v (e.g. a transverse133

momentum), and two auxiliary angular variables ε̄ and ϑ (cf. Appendix A) and the core equation134

that we use for the matched branching probability for any given partition of a dipole is135

dP

d ln v dε̄ dϑ
=

1

d!B

d!

d ln v dε̄ dϑ

Rp(!)

B0(!B)
. (2.5)

Here Rp(!) is a positive partition of the full matrix element for the given final-state, designed136

such that it has the full singularities of the corresponding partition of the dipole, and only those137

– 3 –

Born 
(LO)

1-loop virtual 
 (NLO)

real 
(NLO)

Born +NLO norm. 
(LO + NLO)

= + +

NLO Born normalisation, inclusive over subsequent branching

3 dim. of phase space 
for one extra emission
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matrix element. The correct NLO cross section is therefore obtained upon integration over the127

Born phase space128

ω =

∫
B̄(!B)d!B . (2.4)

When generating events according to Eq. (2.3) one might end up in a situation in which the weight129

is negative thus reducing the e”ciency of the event generation. Sources for these negative weights130

are discussed below in Section 3.1.131

2.2 Treatment of the real radiation132

The shower-branching kinematic variables are the dimensionful ordering variable v (e.g. a transverse133

momentum), and two auxiliary angular variables ε̄ and ϑ (cf. Appendix A) and the core equation134

that we use for the matched branching probability for any given partition of a dipole is135
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=
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Rp(!)

B0(!B)
. (2.5)

Here Rp(!) is a positive partition of the full matrix element for the given final-state, designed136

such that it has the full singularities of the corresponding partition of the dipole, and only those137
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and Born spreading [63] and related methods [64, 65] (see below for further discussion). Methods to290

reduce the fraction of negative weights have also been explored within the Sherpa framework [66].291

Other methods e!ectively modify a sample after it has been generated, notably cell resampling [67–292

69] and machine-learning based neural resampler methods [70]. In general these methods reduce293

the fraction of negative weights, but do not completely eliminate them.7 In almost all cases, the294

reduction comes at the cost of a speed penalty, a potentially hard-to-quantify bias, a sample that295

no longer has uniform weights and/or an after-burner stage that complicates the overall event-296

generation workflow.297

The purpose of this section is to introduce a new method that ensures the absence of negative298

weights, intrinsically as part of the event generation, while maintaining speed and guaranteed299

formal NLO accuracy. In Section 3.1 we discuss the various potential sources of negative weights300

(see also the discussion of Ref. [37]). One main source is addressed by treatments of real radiation301

that involve just multiplicative or (positive-definite) additive matching [2, 31–34], cf. our choices in302

Section 2.2. Section 3.2 then introduces a generic method to address the other non-trivial source,303

connected with the Monte Carlo evaluation of the NLO B̄ normalisation. Section 3.3 provides a304

specific implementation that combines real and NLO normalisation into a single algorithm. Finally,305

Section 3.4 highlights a translation that we have used between slicing and subtraction that facilitates306

the use of our algorithm with the PanScales parton showers.307

3.1 The origins of negative weights in standard matching approaches308

As discussed in Section 2.1, the weight of a Born event, at NLO accuracy, should be generated309

according to310

dω = B̄(”B)d”B , (3.1)

where B̄(”B) is given in Eq. (2.3). In the most common NLO matching approaches, MC@NLO311

and POWHEG, equations like Eq. (2.3)8 are evaluated with the help of FKS [40] or dipole [42, 71]312

subtraction counterterms313

B̄(”B) = B0(”B) + V (”B) + Cint(”B) +

∫
[R(”)→ C(”)] d”rad

︸ ︷︷ ︸
relative order ωs

, (3.2)

where C(”) is a counterterm that is su#ciently simple that it can be integrated analytically314

Cint(”B) =

∫
C(”) d”rad . (3.3)

If we assume that we have positive-definite PDFs, as in recent work from the NNPDF group [72],315

there are three sources of negative weights in common matching procedures.316

The first source of negative weights lies in the fact that the contents of the underbrace in317

Eq. (3.2) may genuinely be large and negative. For example if considering a process such as Z+jet318

production (as the Born process), then in the limit of small-pt for the jet the underbrace will go319

as →B0(”B) ↑ 2εsCF /ϑ ln2 MZ/pt, and the overall B̄ as B0(”B)(1 → 2εsCF /ϑ ln2 MZ/pt). For320

su#ciently small pt, this will go negative. In this case the physical origin is clear.9 However in321

7The neural resampler method promises to eliminate negative event weights, as long as the cross section

is positive in a given phase space region. As discussed below, this is not always the case.
8Note that in MC@NLO R(!) is the shower approximation to the real matrix element.
9And as a result there is an obvious physically-motivated solution in the MiNLO approach [73], which

generates the Born event with a Sudakov, whose expansion cancels the negative ωs ln
2
MZ/pt term. Alter-

natively, if one nests NLO Z and NLO Z + jet showering then one may use formulas such as those present

in Refs. [11, 74–76] which cancel the negative ωs ln
2
MZ/pt through the structure of the nested NLO terms.
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and Born spreading [63] and related methods [64, 65] (see below for further discussion). Methods to290

reduce the fraction of negative weights have also been explored within the Sherpa framework [66].291

Other methods e!ectively modify a sample after it has been generated, notably cell resampling [67–292

69] and machine-learning based neural resampler methods [70]. In general these methods reduce293

the fraction of negative weights, but do not completely eliminate them.7 In almost all cases, the294
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specific implementation that combines real and NLO normalisation into a single algorithm. Finally,305

Section 3.4 highlights a translation that we have used between slicing and subtraction that facilitates306

the use of our algorithm with the PanScales parton showers.307

3.1 The origins of negative weights in standard matching approaches308

As discussed in Section 2.1, the weight of a Born event, at NLO accuracy, should be generated309

according to310

dω = B̄(”B)d”B , (3.1)

where B̄(”B) is given in Eq. (2.3). In the most common NLO matching approaches, MC@NLO311

and POWHEG, equations like Eq. (2.3)8 are evaluated with the help of FKS [40] or dipole [42, 71]312
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, (3.2)

where C(”) is a counterterm that is su#ciently simple that it can be integrated analytically314

Cint(”B) =

∫
C(”) d”rad . (3.3)

If we assume that we have positive-definite PDFs, as in recent work from the NNPDF group [72],315

there are three sources of negative weights in common matching procedures.316

The first source of negative weights lies in the fact that the contents of the underbrace in317

Eq. (3.2) may genuinely be large and negative. For example if considering a process such as Z+jet318

production (as the Born process), then in the limit of small-pt for the jet the underbrace will go319

as →B0(”B) ↑ 2εsCF /ϑ ln2 MZ/pt, and the overall B̄ as B0(”B)(1 → 2εsCF /ϑ ln2 MZ/pt). For320

su#ciently small pt, this will go negative. In this case the physical origin is clear.9 However in321

7The neural resampler method promises to eliminate negative event weights, as long as the cross section

is positive in a given phase space region. As discussed below, this is not always the case.
8Note that in MC@NLO R(!) is the shower approximation to the real matrix element.
9And as a result there is an obvious physically-motivated solution in the MiNLO approach [73], which

generates the Born event with a Sudakov, whose expansion cancels the negative ωs ln
2
MZ/pt term. Alter-

natively, if one nests NLO Z and NLO Z + jet showering then one may use formulas such as those present

in Refs. [11, 74–76] which cancel the negative ωs ln
2
MZ/pt through the structure of the nested NLO terms.
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and Born spreading [63] and related methods [64, 65] (see below for further discussion). Methods to290

reduce the fraction of negative weights have also been explored within the Sherpa framework [66].291

Other methods e!ectively modify a sample after it has been generated, notably cell resampling [67–292

69] and machine-learning based neural resampler methods [70]. In general these methods reduce293

the fraction of negative weights, but do not completely eliminate them.7 In almost all cases, the294

reduction comes at the cost of a speed penalty, a potentially hard-to-quantify bias, a sample that295

no longer has uniform weights and/or an after-burner stage that complicates the overall event-296

generation workflow.297

The purpose of this section is to introduce a new method that ensures the absence of negative298

weights, intrinsically as part of the event generation, while maintaining speed and guaranteed299

formal NLO accuracy. In Section 3.1 we discuss the various potential sources of negative weights300

(see also the discussion of Ref. [37]). One main source is addressed by treatments of real radiation301

that involve just multiplicative or (positive-definite) additive matching [2, 31–34], cf. our choices in302

Section 2.2. Section 3.2 then introduces a generic method to address the other non-trivial source,303

connected with the Monte Carlo evaluation of the NLO B̄ normalisation. Section 3.3 provides a304

specific implementation that combines real and NLO normalisation into a single algorithm. Finally,305

Section 3.4 highlights a translation that we have used between slicing and subtraction that facilitates306

the use of our algorithm with the PanScales parton showers.307

3.1 The origins of negative weights in standard matching approaches308

As discussed in Section 2.1, the weight of a Born event, at NLO accuracy, should be generated309

according to310

dω = B̄(”B)d”B , (3.1)

where B̄(”B) is given in Eq. (2.3). In the most common NLO matching approaches, MC@NLO311

and POWHEG, equations like Eq. (2.3)8 are evaluated with the help of FKS [40] or dipole [42, 71]312

subtraction counterterms313

B̄(”B) = B0(”B) + V (”B) + Cint(”B) +

∫
[R(”)→ C(”)] d”rad

︸ ︷︷ ︸
relative order ωs

, (3.2)

where C(”) is a counterterm that is su#ciently simple that it can be integrated analytically314

Cint(”B) =

∫
C(”) d”rad . (3.3)

If we assume that we have positive-definite PDFs, as in recent work from the NNPDF group [72],315

there are three sources of negative weights in common matching procedures.316

The first source of negative weights lies in the fact that the contents of the underbrace in317

Eq. (3.2) may genuinely be large and negative. For example if considering a process such as Z+jet318

production (as the Born process), then in the limit of small-pt for the jet the underbrace will go319

as →B0(”B) ↑ 2εsCF /ϑ ln2 MZ/pt, and the overall B̄ as B0(”B)(1 → 2εsCF /ϑ ln2 MZ/pt). For320

su#ciently small pt, this will go negative. In this case the physical origin is clear.9 However in321

7The neural resampler method promises to eliminate negative event weights, as long as the cross section

is positive in a given phase space region. As discussed below, this is not always the case.
8Note that in MC@NLO R(!) is the shower approximation to the real matrix element.
9And as a result there is an obvious physically-motivated solution in the MiNLO approach [73], which

generates the Born event with a Sudakov, whose expansion cancels the negative ωs ln
2
MZ/pt term. Alter-

natively, if one nests NLO Z and NLO Z + jet showering then one may use formulas such as those present

in Refs. [11, 74–76] which cancel the negative ωs ln
2
MZ/pt through the structure of the nested NLO terms.
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and Born spreading [63] and related methods [64, 65] (see below for further discussion). Methods to290

reduce the fraction of negative weights have also been explored within the Sherpa framework [66].291

Other methods e!ectively modify a sample after it has been generated, notably cell resampling [67–292

69] and machine-learning based neural resampler methods [70]. In general these methods reduce293

the fraction of negative weights, but do not completely eliminate them.7 In almost all cases, the294

reduction comes at the cost of a speed penalty, a potentially hard-to-quantify bias, a sample that295

no longer has uniform weights and/or an after-burner stage that complicates the overall event-296

generation workflow.297

The purpose of this section is to introduce a new method that ensures the absence of negative298

weights, intrinsically as part of the event generation, while maintaining speed and guaranteed299

formal NLO accuracy. In Section 3.1 we discuss the various potential sources of negative weights300

(see also the discussion of Ref. [37]). One main source is addressed by treatments of real radiation301

that involve just multiplicative or (positive-definite) additive matching [2, 31–34], cf. our choices in302

Section 2.2. Section 3.2 then introduces a generic method to address the other non-trivial source,303

connected with the Monte Carlo evaluation of the NLO B̄ normalisation. Section 3.3 provides a304

specific implementation that combines real and NLO normalisation into a single algorithm. Finally,305

Section 3.4 highlights a translation that we have used between slicing and subtraction that facilitates306

the use of our algorithm with the PanScales parton showers.307

3.1 The origins of negative weights in standard matching approaches308

As discussed in Section 2.1, the weight of a Born event, at NLO accuracy, should be generated309

according to310

dω = B̄(”B)d”B , (3.1)

where B̄(”B) is given in Eq. (2.3). In the most common NLO matching approaches, MC@NLO311

and POWHEG, equations like Eq. (2.3)8 are evaluated with the help of FKS [40] or dipole [42, 71]312
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B̄(”B) = B0(”B) + V (”B) + Cint(”B) +

∫
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︸ ︷︷ ︸
relative order ωs

, (3.2)

where C(”) is a counterterm that is su#ciently simple that it can be integrated analytically314

Cint(”B) =

∫
C(”) d”rad . (3.3)

If we assume that we have positive-definite PDFs, as in recent work from the NNPDF group [72],315

there are three sources of negative weights in common matching procedures.316

The first source of negative weights lies in the fact that the contents of the underbrace in317

Eq. (3.2) may genuinely be large and negative. For example if considering a process such as Z+jet318

production (as the Born process), then in the limit of small-pt for the jet the underbrace will go319

as →B0(”B) ↑ 2εsCF /ϑ ln2 MZ/pt, and the overall B̄ as B0(”B)(1 → 2εsCF /ϑ ln2 MZ/pt). For320

su#ciently small pt, this will go negative. In this case the physical origin is clear.9 However in321

7The neural resampler method promises to eliminate negative event weights, as long as the cross section

is positive in a given phase space region. As discussed below, this is not always the case.
8Note that in MC@NLO R(!) is the shower approximation to the real matrix element.
9And as a result there is an obvious physically-motivated solution in the MiNLO approach [73], which

generates the Born event with a Sudakov, whose expansion cancels the negative ωs ln
2
MZ/pt term. Alter-

natively, if one nests NLO Z and NLO Z + jet showering then one may use formulas such as those present

in Refs. [11, 74–76] which cancel the negative ωs ln
2
MZ/pt through the structure of the nested NLO terms.
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Robust positivity with NLO accuracy (spurious terms from NNLO)

32
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Robust positivity with NLO accuracy (spurious terms from N3LO)
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This is a “foundation” algorithm — can be adapted in many ways
➤ ESME ≡ Exponentiated Subtraction for Matching Events 

➤ Our implementation actually uses a variant that handles real emissions and NLO 
normalisation simultaneously (more efficient, only a bit more complex)

34

events relative to the Born rate, while stream 2 will add a fraction O (ωs) of events. The sum of421

the two streams will also generate the hardest emission in such a way as to produce the correct real422

matrix element.423

Algorithm Stream 1 (ESME) Born + NLO rejection

1: Generate Born event according to B̄C distribution and set v = vmax

2: while v > vmin do

3: generate next v and !2 according to Sudakov with density ε(v)d ln v, Eq. (3.6)

4: generate random number 0 < r < 1

5: if C(!) > R(!) then

6: if r > C(!)/M(!): veto emission

7: else if r > R(!)/M(!): return reject event

8: else: accept emission and return continue shower, accept event

9: else

10: if r > C(!)/M(!): veto emission

11: else: accept emission and return continue shower, accept event

12: return accept event

Let us first look at the algorithm for Stream 1. Step 7 is a critical part of the algorithm,424

because it is the only step that is non-unitary. Specifically, it rejects the event with probability425

[C(!)→ R(!)]/M(!). It is the direct analogue of step 7 of Algorithm 1, which decrements nb. In426

standard NLO approaches for evaluating Eq. (3.2), such regions with C > R would be associated427

with a risk of negative-weight events. Because we account for that region through a rejection428

mechanism, that danger does not arise here. Aside from that, the C > R branch is very much the429

standard Sudakov veto algorithm, accepting the emission with probability R(!)/M(!) in step 8.430

In the other branch, C ↑ R, the stream 1 algorithm deviates from the standard Sudakov algorithm,431

because the emission is accepted with probability C(!)/M(!) rather thanR(!)/M(!). The missing432

di”erence R(!)→ C(!), which connects with the increment of nb in step 6 of Algorithm 1, will be433

accounted for in the algorithm for Stream 2.

Algorithm Stream 2 (ESME) NLO addition

1: Generate Born event according to B̄C (or B0) distribution and set v = vmax

2: while v > vmin do

3: generate next v and !2 according to Sudakov with density ε(v)d ln v, Eq. (3.6)

4: generate random number 0 < r < 1

5: if C(!) > R(!) then

6: if r > R(!)/M(!): veto emission

7: else: return reject event

8: else

9: if r > R(!)/M(!): veto emission

10: else if r > C(!)/M(!): accept emsn, return continue shower, accept event

11: else: return reject event

12: return reject event

434
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Does ESME give the correct answer? → Yes

Comparison to exact NLO 
(and to more standard method, here 
labelled dBNLO)

35

Figure 3: NLO tests for the pp → Z/ω→ → e+e↑ process with cuts on the lepton transverse

momentum and rapidity. Left (right): the invariant mass (rapidity) of the colour singlet.

The top and middle panels show results with phenomenological settings, compared to NLO

predictions from MCFM. Bands correspond to 7-scale uncertainty. The bottom panel shows

the ratio of the shower NLO coe!cient (extracted in an εs → 0 limit) to the NLO coe!cient

from MCFM. The bands represent the combined statistical uncertainty on the ratio.

mH = 125 GeV , ”Z = 2.4952 GeV , ”W = 2.085 GeV .

In the Higgs case, we also use the infinite top mass limit [83, 84]. To obtain the LO and NLO574

baselines, we use MCFM v10.3 [85–89]. For phenomenological results we take the event-by-event575

di-lepton (or Higgs) invariant mass as our central renormalisation scale and carry out 7-point scale576

variation to show uncertainty bands. For the extraction of the pure NLO coe!cient, we instead use577

a fixed renormalisation and factorisation scale equal to the on-shell mass of the produced boson, as578

given in Eq. (4.4).579

Fig. 3 shows results for pp → Z/ω→
→ e+e↑ with the following lepton cuts: ptω > 27 GeV and580

|ϑω| < 2.5, 66 < mωω < 116 GeV. The left-hand panel is for the distribution of mωω, the lepton-pair581

invariant mass; the right-hand panel is for the rapidity of the boson (or equivalently, the lepton582

pair). As in Fig. 2, the upper panels show the di#erential cross section, while the middle panels583

show the ratio to NLO. One observes agreement to within about a percent for both ESME and584

dBNLO. Note that with our specific lepton cuts, the NLO K-factor is quite close to 1 near the Z585

mass and for central rapidities. This comes from an interplay between a positive NLO e#ect in the586

total cross section and negative NLO e#ect due to the cuts. That interplay is also responsible for587

much of the kinematic dependence of the NLO K-factor. The lower panels show the εs → 0 test588

of NLO accuracy. Given that the NLO coe!cient is close to zero in parts of the phase space, we589

show a ratio to εs times the LO result,590

lim
εs↓0

d$ϖNLO

shower
↑ d$ϖNLO

εs dϖLO
. (4.5)

– 18 –
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Is ESME fast enough?

➤ positive definite by 
construction 

➤ turns out to be ~4× 
faster than fastest of 
public NLO tools 
(POWHEG-Boxv2)* 

➤ NB: this is a simple 
process (Drell-Yan) 
— timing more 
critical for more 
complex processes

36
Figure 12: Illustration of the performance of our ESME implementation as compared to

POWHEG-BOX-V2, for pp → Z/ω→ → ε+ε↑ (left panel), and of our ESME and P2B implemen-

tations for the ω→-mediated DIS as compared to the POWHEG-BOX-RES (right panel). The

plot shows the time per event versus the fraction of negative weights. The three POWHEG-BOX

points for Drell–Yan production correspond (from right to left) to folding choices for ϑ, y

and ϖ of 1,1,1, 2,1,1 and 5,1,1. For DIS we instead considered the folding choices: 1,1,1,

1,1,2 and 1,1,5 (from right to left). For all cases, the event generation time is for NLO

accuracy with just the hardest emission, and is evaluated by running on a single core of an

Apple M2 Pro processor.

purposes, a user could even set out to verify that they do not cluster in any specific phase space756

regions and then arguably just discard them. Still this process helps illustrate the tradeo! between757

folding, event-generation time and negative-weight fraction. For DIS, we found that the optimal758

folding is the one over the ϖ-variable, and we considered 1, 2 and 5 foldings (from right to left).759

The fraction of negative weight is slightly higher than in Drell–Yan production, but always below760

5%, and in particular it is equal to 2% with 2 foldings over the ϖ-variable, which does not seem to761

induce an appreciable speed penalty. Increasing to 5 foldings leads only to a marginal reduction of762

negative-weighted events, but a substantial increase of the run time. In general, the higher fraction763

of negative weights compared to the Drell–Yan case, is due to the lower scale of the process under764

consideration.19765

Fig. 12 also shows the timing of the ESME method of Section 3.3 (red point) for both Drell–766

Yan (left) and DIS (right), as well as P2B of Sec. 2.4 (green point) for DIS only. By construction,767

neither the ESME nor the P2B methods have any negative-weight events. ESME is about four768

times faster than the fastest of the POWHEG-BOX configurations for Drell–Yan, and ten times for769

DIS, taking about 40µs per event regardless of the process considered. It is also interesting to note770

that the time per ESME event is only roughly double the P2B one, despite the more complicated771

rejection algorithm involved in ESME. This high speed should be put into context: we devoted772

some e!ort to understand the generation of the phase space, which led, e.g. to the lepton-swap773

technique mentioned in Section 2.2 and also enabled us to limit the warmup phase. We hard-coded774

our own matrix elements, which allowed the matrix element for the two lepton-swap configurations775

to be evaluated in almost the same time as a single configuration. We also used a pre-release776

version of Hoppet 1.3.0 [49, 50] to evaluate the PDFs at each x, µF point, which appeared to bring777

19Increasing the lower cut on QDIS to 50 GeV, and using 2 folds on ω, the fraction of negative weights is

0.2%, i.e. 10 times smaller, and the time per event is 0.6 ms.
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Conclusions
➤ Positivity can be built into NLO calculations 

➤ Price to pay is a change of higher terms beyond NLO 

➤ these higher order terms appear to be numerically modest 

➤ higher order terms anyway present for most observables in other NLO matching 
methods 

➤ underlying algorithm can be adapted to push them to arbitrary high order, e.g. for 
NNLO matching 

➤ Underlying algorithms are simple, should be possible for other groups to try them 
out, also for more complex processes than the ones we studied 

➤ Key step on path to making pQFT predictions simultaneously accurate and physical
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where M(!) is a generic overestimate function that is always at least as large as the maximum of355

R(!) and C(!). In the discussion below we take it to always be of order ωs. By definition, R(!)356

is positive definite and we assume a subtraction scheme in which C(!) is also positive definite,357

possibly after a suitable sum over partitions.11 With this we can introduce our core procedure,358

Algorithm 1.359

Algorithm 1 General algorithm to convert NLO subtraction integral to integer

1: Set nb = 1 and v = vmax

2: while v > vmin do

3: generate next v and !2 according to Sudakov with density ε(v)d ln v, Eq. (3.6)

4: generate random number 0 < r < 1

5: if r < |R(!)→ C(!)|/M(!) then

6: if R(!) > C(!): nb ↑ nb + 1

7: else: nb ↑ nb → 1

8: return nb

Algorithm 1 calculates an event-by-event normalisation factor nb that multiplies B0(!B) and360

whose average across many events with the same !B is intended to satisfy361

↓nb↔ = 1 +

∫
R(!)→ C(!)

B0(!B)
d!rad . (3.7)

We can demonstrate that it achieves this as follows. The probability that the algorithm will have362

triggered step 3 in a specific d ln v window is given by ε(v)d ln v. Given the ln v value and !2363

phase-space point, the algorithm will increment or decrement nb with conditional probabilities P+364

or P→ respectively365

if R(!) > C(!), increment nb with probability P+ =
R(!)→ C(!)

M(!)
, (3.8a)

if R(!) < C(!), decrement nb with probability P→ =
C(!)→R(!)

M(!)
, (3.8b)

or otherwise leave nb unchanged. Writing out the integrals for ε(v), this then gives the following366

result for the average of nb,367

↓nb↔ = 1 +

∫
dv

v
d!2J

M(!)

B0(!B)
(P+ → P→) (3.9)

which simplifies exactly to Eq. (3.7).368

Algorithm 1 always gives an integer as its output. All but a fraction O (ωs) of the time, the369

integer that is returned is nb = 1. A fraction O (ωs) of the time, the integer will be nb = 0 or370

nb = 2. A fraction O
(
ω2

s

)
of the time, the integer will be nb = →1 or nb = 3, and so forth. Thus,371

if we are interested just in NLO accuracy, we can discard any events with nb < 0. Similarly, we372

11The C(!) → 0 restriction can, we believe, be lifted simply by replacing max[R(!), C(!)], below, with

max[R(!), C(!), R(!)↑C(!)]. M(!) is generally trivial to find in the infrared. It may be more complicated

in the hard region if R(!)/B0(!B) grows large, however in that case it is conceptually straightforward to

add a separate stream of events that accounts for any regions where M(!) is not su”ciently large, using

standard unweighting methods. Typically we would expect C(!)/B0(!B) to remain under good control

insofar as the counterterm is constructed from the Born multiplied by a factorised emission.

– 10 –

 then multiplies Born matrix element  

 is exactly equal to

nB B0(ΦB)

⟨nB⟩

general there may be a range of situations where the NLO coe!cient is large and negative and the323

physical origin will not always be obvious.324

A second source of negative weights is connected with the way the integral in Eq. (3.2) is325

evaluated. In general, it requires a Monte Carlo evaluation, and this is often done with just a326

single ”rad sample for a given ”B. Even if the underbrace is positive when carrying out the full327

integration, in a Monte Carlo evaluation with a limited number of ”rad points, for a given by ”B328

one may, by chance, end up sampling a set of ”rad phase space points such that the underbrace329

appears large and negative. The main mitigation measure that is used for this is folding [43], which330

splits the real phase space into distinct regions and samples each of them for any given ”B. This331

can improve the situation quite substantially, albeit at a speed cost. Other techniques [63–65] seek332

to reorganise the integrand. This can reduce the fraction of negative weights without any impact333

on speed, but it arguably adds complexity to the formulation of the method. A they stand, none334

of these method provide a guarantee of positivity.335

In purely additive matching schemes, notably the MC@NLO approach, one has a third source336

of negative weights.10 In such an approach the B̄s(”B) function reads337

B̄s(”B) = B0(”B) + V (”B) +

∫
Rs(”) d”rad

︸ ︷︷ ︸
relative order ωs

(3.4)

where Rs(”) is the shower’s approximation of the real matrix element. The Born event generation338

(with its subsequent showering) is then to be supplemented with an additional stream of events,339

which generates340

d”(R→Rs), (3.5)

leading to negative weights when R < Rs.341

In the rest of this section, we will show how to eliminate all sources of negative weights and so342

guarantee positive-weight events. In the simple cases that we have implemented, this is achieved343

without any speed penalty relative to the public NLO matching codes that we have tried.344

3.2 Exponentiated subtraction for B̄345

Here we present an algorithm that converts any subtraction integral of the form Eq. (3.2) into an346

event-by-event integer, with the option to bound the integer and to control higher order terms in347

the Monte Carlo average to some given order. The underlying principles of this algorithm can serve348

as a basis for a wide range of variants.349

As a starting point, we assume a phase-space generation in which one can factorise the radiation350

phase space d”rad into an ordering variable v and a 2-dimensional remainder, d”rad = d ln vJd”2,351

where J is a Jacobian. Standard FKS [40] and Catani-Seymour [71] phase-space generation lend352

themselves to this organisation, as reflected in their use for parton-shower style real-emission gen-353

eration in POWHEG-BOX [3] and Sherpa [77]. For the purposes of the discussion below, it may be354

useful to think of v as being equivalent to a transverse momentum. As with a standard shower, we355

define a Sudakov factor356

#(v) = exp

[
→

∫
vmax

v

dv→

v→ ω(v
→)

]
with

ω(v) =

∫
d”2 J

M(”)

B0(”B)
, M(”) ↑ max[R(”), C(”)] (3.6)

10Called H in e.g. Ref. [37]; there it is further split into N.1 and N.2. The first and second sources that

we discussed above correspond, together, to S in Ref. [37], or equivalently N.3.
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10Called H in e.g. Ref. [37]; there it is further split into N.1 and N.2. The first and second sources that

we discussed above correspond, together, to S in Ref. [37], or equivalently N.3.

– 9 –

general there may be a range of situations where the NLO coe!cient is large and negative and the323

physical origin will not always be obvious.324

A second source of negative weights is connected with the way the integral in Eq. (3.2) is325

evaluated. In general, it requires a Monte Carlo evaluation, and this is often done with just a326

single ”rad sample for a given ”B. Even if the underbrace is positive when carrying out the full327

integration, in a Monte Carlo evaluation with a limited number of ”rad points, for a given by ”B328

one may, by chance, end up sampling a set of ”rad phase space points such that the underbrace329

appears large and negative. The main mitigation measure that is used for this is folding [43], which330

splits the real phase space into distinct regions and samples each of them for any given ”B. This331

can improve the situation quite substantially, albeit at a speed cost. Other techniques [63–65] seek332

to reorganise the integrand. This can reduce the fraction of negative weights without any impact333

on speed, but it arguably adds complexity to the formulation of the method. A they stand, none334

of these method provide a guarantee of positivity.335

In purely additive matching schemes, notably the MC@NLO approach, one has a third source336

of negative weights.10 In such an approach the B̄s(”B) function reads337

B̄s(”B) = B0(”B) + V (”B) +

∫
Rs(”) d”rad

︸ ︷︷ ︸
relative order ωs

(3.4)

where Rs(”) is the shower’s approximation of the real matrix element. The Born event generation338

(with its subsequent showering) is then to be supplemented with an additional stream of events,339

which generates340

d”(R→Rs), (3.5)

leading to negative weights when R < Rs.341

In the rest of this section, we will show how to eliminate all sources of negative weights and so342

guarantee positive-weight events. In the simple cases that we have implemented, this is achieved343

without any speed penalty relative to the public NLO matching codes that we have tried.344

3.2 Exponentiated subtraction for B̄345

Here we present an algorithm that converts any subtraction integral of the form Eq. (3.2) into an346

event-by-event integer, with the option to bound the integer and to control higher order terms in347

the Monte Carlo average to some given order. The underlying principles of this algorithm can serve348

as a basis for a wide range of variants.349

As a starting point, we assume a phase-space generation in which one can factorise the radiation350

phase space d”rad into an ordering variable v and a 2-dimensional remainder, d”rad = d ln vJd”2,351

where J is a Jacobian. Standard FKS [40] and Catani-Seymour [71] phase-space generation lend352

themselves to this organisation, as reflected in their use for parton-shower style real-emission gen-353

eration in POWHEG-BOX [3] and Sherpa [77]. For the purposes of the discussion below, it may be354

useful to think of v as being equivalent to a transverse momentum. As with a standard shower, we355

define a Sudakov factor356

#(v) = exp

[
→

∫
vmax

v

dv→

v→ ω(v
→)

]
with

ω(v) =

∫
d”2 J

M(”)

B0(”B)
, M(”) ↑ max[R(”), C(”)] (3.6)

10Called H in e.g. Ref. [37]; there it is further split into N.1 and N.2. The first and second sources that

we discussed above correspond, together, to S in Ref. [37], or equivalently N.3.

– 9 –

<latexit sha1_base64="ZBW4n1Sgdsyzo2p/cUdMT6AN4G0="></latexit>

1 +

∫
R→ C

B0
d!rad

︸ ︷︷ ︸
order ωs

<latexit sha1_base64="fe1e5SzitopsMxLyUJhSdvO+5JM="></latexit>

d!rad → dv

v
d!2



KITP, March 2025Gavin Salam 39

where M(!) is a generic overestimate function that is always at least as large as the maximum of355

R(!) and C(!). In the discussion below we take it to always be of order ωs. By definition, R(!)356

is positive definite and we assume a subtraction scheme in which C(!) is also positive definite,357

possibly after a suitable sum over partitions.11 With this we can introduce our core procedure,358

Algorithm 1.359

Algorithm 1 General algorithm to convert NLO subtraction integral to integer

1: Set nb = 1 and v = vmax

2: while v > vmin do

3: generate next v and !2 according to Sudakov with density ε(v)d ln v, Eq. (3.6)

4: generate random number 0 < r < 1

5: if r < |R(!)→ C(!)|/M(!) then

6: if R(!) > C(!): nb ↑ nb + 1

7: else: nb ↑ nb → 1

8: return nb

Algorithm 1 calculates an event-by-event normalisation factor nb that multiplies B0(!B) and360

whose average across many events with the same !B is intended to satisfy361

↓nb↔ = 1 +

∫
R(!)→ C(!)

B0(!B)
d!rad . (3.7)

We can demonstrate that it achieves this as follows. The probability that the algorithm will have362

triggered step 3 in a specific d ln v window is given by ε(v)d ln v. Given the ln v value and !2363

phase-space point, the algorithm will increment or decrement nb with conditional probabilities P+364

or P→ respectively365

if R(!) > C(!), increment nb with probability P+ =
R(!)→ C(!)

M(!)
, (3.8a)

if R(!) < C(!), decrement nb with probability P→ =
C(!)→R(!)

M(!)
, (3.8b)

or otherwise leave nb unchanged. Writing out the integrals for ε(v), this then gives the following366

result for the average of nb,367

↓nb↔ = 1 +

∫
dv

v
d!2J

M(!)

B0(!B)
(P+ → P→) (3.9)

which simplifies exactly to Eq. (3.7).368

Algorithm 1 always gives an integer as its output. All but a fraction O (ωs) of the time, the369

integer that is returned is nb = 1. A fraction O (ωs) of the time, the integer will be nb = 0 or370

nb = 2. A fraction O
(
ω2

s

)
of the time, the integer will be nb = →1 or nb = 3, and so forth. Thus,371

if we are interested just in NLO accuracy, we can discard any events with nb < 0. Similarly, we372

11The C(!) → 0 restriction can, we believe, be lifted simply by replacing max[R(!), C(!)], below, with

max[R(!), C(!), R(!)↑C(!)]. M(!) is generally trivial to find in the infrared. It may be more complicated

in the hard region if R(!)/B0(!B) grows large, however in that case it is conceptually straightforward to

add a separate stream of events that accounts for any regions where M(!) is not su”ciently large, using

standard unweighting methods. Typically we would expect C(!)/B0(!B) to remain under good control

insofar as the counterterm is constructed from the Born multiplied by a factorised emission.

– 10 –

 then multiplies Born matrix element  

 is exactly equal to

nB B0(ΦB)

⟨nB⟩

general there may be a range of situations where the NLO coe!cient is large and negative and the323

physical origin will not always be obvious.324

A second source of negative weights is connected with the way the integral in Eq. (3.2) is325

evaluated. In general, it requires a Monte Carlo evaluation, and this is often done with just a326

single ”rad sample for a given ”B. Even if the underbrace is positive when carrying out the full327

integration, in a Monte Carlo evaluation with a limited number of ”rad points, for a given by ”B328

one may, by chance, end up sampling a set of ”rad phase space points such that the underbrace329

appears large and negative. The main mitigation measure that is used for this is folding [43], which330

splits the real phase space into distinct regions and samples each of them for any given ”B. This331

can improve the situation quite substantially, albeit at a speed cost. Other techniques [63–65] seek332

to reorganise the integrand. This can reduce the fraction of negative weights without any impact333

on speed, but it arguably adds complexity to the formulation of the method. A they stand, none334

of these method provide a guarantee of positivity.335

In purely additive matching schemes, notably the MC@NLO approach, one has a third source336

of negative weights.10 In such an approach the B̄s(”B) function reads337

B̄s(”B) = B0(”B) + V (”B) +

∫
Rs(”) d”rad

︸ ︷︷ ︸
relative order ωs

(3.4)

where Rs(”) is the shower’s approximation of the real matrix element. The Born event generation338

(with its subsequent showering) is then to be supplemented with an additional stream of events,339

which generates340

d”(R→Rs), (3.5)

leading to negative weights when R < Rs.341

In the rest of this section, we will show how to eliminate all sources of negative weights and so342

guarantee positive-weight events. In the simple cases that we have implemented, this is achieved343

without any speed penalty relative to the public NLO matching codes that we have tried.344

3.2 Exponentiated subtraction for B̄345

Here we present an algorithm that converts any subtraction integral of the form Eq. (3.2) into an346

event-by-event integer, with the option to bound the integer and to control higher order terms in347

the Monte Carlo average to some given order. The underlying principles of this algorithm can serve348

as a basis for a wide range of variants.349

As a starting point, we assume a phase-space generation in which one can factorise the radiation350

phase space d”rad into an ordering variable v and a 2-dimensional remainder, d”rad = d ln vJd”2,351

where J is a Jacobian. Standard FKS [40] and Catani-Seymour [71] phase-space generation lend352

themselves to this organisation, as reflected in their use for parton-shower style real-emission gen-353

eration in POWHEG-BOX [3] and Sherpa [77]. For the purposes of the discussion below, it may be354

useful to think of v as being equivalent to a transverse momentum. As with a standard shower, we355

define a Sudakov factor356

#(v) = exp

[
→

∫
vmax

v

dv→

v→ ω(v
→)

]
with

ω(v) =

∫
d”2 J

M(”)

B0(”B)
, M(”) ↑ max[R(”), C(”)] (3.6)

10Called H in e.g. Ref. [37]; there it is further split into N.1 and N.2. The first and second sources that

we discussed above correspond, together, to S in Ref. [37], or equivalently N.3.

– 9 –

general there may be a range of situations where the NLO coe!cient is large and negative and the323

physical origin will not always be obvious.324

A second source of negative weights is connected with the way the integral in Eq. (3.2) is325

evaluated. In general, it requires a Monte Carlo evaluation, and this is often done with just a326

single ”rad sample for a given ”B. Even if the underbrace is positive when carrying out the full327

integration, in a Monte Carlo evaluation with a limited number of ”rad points, for a given by ”B328

one may, by chance, end up sampling a set of ”rad phase space points such that the underbrace329

appears large and negative. The main mitigation measure that is used for this is folding [43], which330

splits the real phase space into distinct regions and samples each of them for any given ”B. This331

can improve the situation quite substantially, albeit at a speed cost. Other techniques [63–65] seek332

to reorganise the integrand. This can reduce the fraction of negative weights without any impact333

on speed, but it arguably adds complexity to the formulation of the method. A they stand, none334

of these method provide a guarantee of positivity.335

In purely additive matching schemes, notably the MC@NLO approach, one has a third source336

of negative weights.10 In such an approach the B̄s(”B) function reads337

B̄s(”B) = B0(”B) + V (”B) +

∫
Rs(”) d”rad

︸ ︷︷ ︸
relative order ωs

(3.4)

where Rs(”) is the shower’s approximation of the real matrix element. The Born event generation338

(with its subsequent showering) is then to be supplemented with an additional stream of events,339

which generates340

d”(R→Rs), (3.5)

leading to negative weights when R < Rs.341

In the rest of this section, we will show how to eliminate all sources of negative weights and so342

guarantee positive-weight events. In the simple cases that we have implemented, this is achieved343

without any speed penalty relative to the public NLO matching codes that we have tried.344

3.2 Exponentiated subtraction for B̄345

Here we present an algorithm that converts any subtraction integral of the form Eq. (3.2) into an346

event-by-event integer, with the option to bound the integer and to control higher order terms in347

the Monte Carlo average to some given order. The underlying principles of this algorithm can serve348

as a basis for a wide range of variants.349

As a starting point, we assume a phase-space generation in which one can factorise the radiation350

phase space d”rad into an ordering variable v and a 2-dimensional remainder, d”rad = d ln vJd”2,351

where J is a Jacobian. Standard FKS [40] and Catani-Seymour [71] phase-space generation lend352

themselves to this organisation, as reflected in their use for parton-shower style real-emission gen-353

eration in POWHEG-BOX [3] and Sherpa [77]. For the purposes of the discussion below, it may be354

useful to think of v as being equivalent to a transverse momentum. As with a standard shower, we355

define a Sudakov factor356

#(v) = exp

[
→

∫
vmax

v

dv→

v→ ω(v
→)

]
with

ω(v) =

∫
d”2 J

M(”)

B0(”B)
, M(”) ↑ max[R(”), C(”)] (3.6)

10Called H in e.g. Ref. [37]; there it is further split into N.1 and N.2. The first and second sources that

we discussed above correspond, together, to S in Ref. [37], or equivalently N.3.

– 9 –

general there may be a range of situations where the NLO coe!cient is large and negative and the323

physical origin will not always be obvious.324

A second source of negative weights is connected with the way the integral in Eq. (3.2) is325

evaluated. In general, it requires a Monte Carlo evaluation, and this is often done with just a326

single ”rad sample for a given ”B. Even if the underbrace is positive when carrying out the full327

integration, in a Monte Carlo evaluation with a limited number of ”rad points, for a given by ”B328

one may, by chance, end up sampling a set of ”rad phase space points such that the underbrace329

appears large and negative. The main mitigation measure that is used for this is folding [43], which330

splits the real phase space into distinct regions and samples each of them for any given ”B. This331

can improve the situation quite substantially, albeit at a speed cost. Other techniques [63–65] seek332

to reorganise the integrand. This can reduce the fraction of negative weights without any impact333

on speed, but it arguably adds complexity to the formulation of the method. A they stand, none334

of these method provide a guarantee of positivity.335

In purely additive matching schemes, notably the MC@NLO approach, one has a third source336

of negative weights.10 In such an approach the B̄s(”B) function reads337

B̄s(”B) = B0(”B) + V (”B) +

∫
Rs(”) d”rad

︸ ︷︷ ︸
relative order ωs

(3.4)

where Rs(”) is the shower’s approximation of the real matrix element. The Born event generation338

(with its subsequent showering) is then to be supplemented with an additional stream of events,339

which generates340

d”(R→Rs), (3.5)

leading to negative weights when R < Rs.341

In the rest of this section, we will show how to eliminate all sources of negative weights and so342

guarantee positive-weight events. In the simple cases that we have implemented, this is achieved343

without any speed penalty relative to the public NLO matching codes that we have tried.344

3.2 Exponentiated subtraction for B̄345

Here we present an algorithm that converts any subtraction integral of the form Eq. (3.2) into an346

event-by-event integer, with the option to bound the integer and to control higher order terms in347

the Monte Carlo average to some given order. The underlying principles of this algorithm can serve348

as a basis for a wide range of variants.349

As a starting point, we assume a phase-space generation in which one can factorise the radiation350

phase space d”rad into an ordering variable v and a 2-dimensional remainder, d”rad = d ln vJd”2,351

where J is a Jacobian. Standard FKS [40] and Catani-Seymour [71] phase-space generation lend352

themselves to this organisation, as reflected in their use for parton-shower style real-emission gen-353

eration in POWHEG-BOX [3] and Sherpa [77]. For the purposes of the discussion below, it may be354

useful to think of v as being equivalent to a transverse momentum. As with a standard shower, we355

define a Sudakov factor356

#(v) = exp

[
→

∫
vmax

v

dv→

v→ ω(v
→)

]
with

ω(v) =

∫
d”2 J

M(”)

B0(”B)
, M(”) ↑ max[R(”), C(”)] (3.6)

10Called H in e.g. Ref. [37]; there it is further split into N.1 and N.2. The first and second sources that

we discussed above correspond, together, to S in Ref. [37], or equivalently N.3.

– 9 –

𝒪(αs)

<latexit sha1_base64="ZBW4n1Sgdsyzo2p/cUdMT6AN4G0="></latexit>

1 +

∫
R→ C

B0
d!rad

︸ ︷︷ ︸
order ωs

<latexit sha1_base64="fe1e5SzitopsMxLyUJhSdvO+5JM="></latexit>

d!rad → dv

v
d!2



KITP, March 2025Gavin Salam 40

R

M

C

M

0

stream 1 stream 2

ESME, R < C

veto emsn

reject evt

accept evt reject evt

veto emsn R

M

C

M

0

stream 1 stream 2

ESME, R > C

veto emsn

accept evt

veto emsn

accept evt

reject evt

Figure 1: Simple illustration of the di!erent possible actions in the two streams of the

ESME algorithm with joint reals and subtractions. The actions are shown separately for

the cases R(”) < C(”) (left) and R(”) > C(”) (right). In each case, when summing the

two streams, one sees that the “accept evt” action occurs with total weight R/M . One

can also verify that the contribution to the total event rate change relative to the B̄C

normalisation is (R → C)/M . Recall that the default action in stream 1 (2) is to accept

(reject) the event if the shower scale reaches vmin — only when the action is di!erent from

the stream’s default is the total event rate a!ected.

Specifically, stream 2’s step 10 occurs with probability proportional to R(”) → C(”). It also435

generates a real emission, compensating the missing contribution for real emissions in stream 1’s436

step 11. Stream 2’s step 10 is also the only step that leads to an event being accepted in that437

stream. To order ωs, the corresponding probability, [R(”) → C(”)]/M(”) (when R > C) exactly438

matches the probability for incrementing nb in step 6 of Algorithm 1. The behaviour of the overall439

algorithm is illustrated also in Fig. 1.440

The combination of the two streams in reminiscent in some ways of the MAcNLOPS method [34],441

while stream 1 alone is similarly reminiscent of KrKNLO [33]. But, where those references aimed442

to eliminate negative-weight events when trying to obtain the correct real part of the showering,443

here our intention is to also address di#culties that arise with the overall normalisation.444

A further comment is that each stream exits the main matching loop as soon as a non-trivial445

action has taken place (i.e. reject event, or accept the emission and continue normal showering446

of the accepted event). If M(”) is chosen carefully enough, i.e. to be of order ωs, then there is447

an O (1) probability of exiting the loop at each stage, leading to an O (1) total number iterations448

around the loop. This is to be contrasted with the default formulation of Algorithm 1, which would449

typically require a number of steps proportional to ln2 vmax/vmin, most of which would bring no450

action because |R→ C| ↑ M for small v.451

Overall the above approach addresses the second source of negative events discussed in Sec-452

tion 3.1, i.e. the one associated with the NLO normalisation, as well as potentially speeding up the453

generation by not requiring evaluation of the d”rad(R→C) integral directly in the Born. The third454

source of negative events (associated with the generation of real radiation) was already implicitly455

addressed by our use of multiplicative matching, cf. Section 2.2. There remains a potential for the456

– 13 –



KITP, March 2025Gavin Salam 41

Figure 11: PanScales NLL+NLO matched showers, interfaced with Pythia [103], as com-

pared to 13 TeV QED-Born di-lepton data from the ATLAS collaboration [104]. The

left-hand plot is for the di-lepton transverse momentum distribution, while the right-hand

plot is for the ω→
ω variable [105], cf. Eq. (5.1). In the Pythia interface, we include Pythia’s

primordial transverse momentum but not hadronisation, QED e!ects or multi-parton in-

teractions.

PanLocal shower). The pp and DIS tests represent the first time that NNDL event-shape accuracy696

has been demonstrated for a matched parton shower with incoming hadron beams.697

5 Brief comparison to data and performance studies698

5.1 Comparison to data699

Several features are still missing from PanScales and its Pythia interface in order to carry out a700

full phenomenological comparison to data with incoming hadrons. These include QED e!ects and,701

in pp collisions, multi-parton interactions. Therefore in this section we consider only a very first702

basic comparison, with the intention of elaborating on the results shown here in future work. The703

showers that we show here are the first to have demonstrated general NLL accuracy combined with704

NLO together with NNDL accuracy for event-shape like observables.705

We use a pre-release PanScales version 0.3 with its interface [106] to Pythia 8.312 [103] as well706

as Pythia’s HepMC3 [107] interface to the RIVET tool [108] in order to carry out the ATLAS di-707

lepton analysis of Ref. [104]. The analysis considers events with two oppositely charged QED-Born708

leptons, each with ptω > 27 GeV and |εω| < 2.5. The left-hand plot of Fig. 11 shows the di-lepton709

pt distribution, normalised to the total cross section, while the right-hand plot shows the ω→
ε
[105]710

distribution with711

ω→
ε
→ tan

(
ϑ ↑”ωωω

2

)
sin ϖ→

ε
, cos ϖ→

ε
= tanh

εω→ ↑ εω+

2
. (5.1)

Both observables are in the ϱobs = 0 class but they have substantially di!erent NLL resummation712

structures. The figures show curves from the ESME NLO-matching method with the PanGlobal713

– 25 –



KITP, March 2025Gavin Salam

Recent surprise: H→γγ fiducial N3LO σ uncertainties ~2  greater than inclusive N3LO σ uncertaities×

42
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Chen, Gehrmann, Glover, Huss, Mistlberger & Pelloni, 2102.07607
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
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