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Why not just plain (N)NLO?

incredibly powerful, get scattering cross-sections from first
few orders of perturbative expansion in the strong coupling a,

0O = 0yt Q0] + 0(302 T -

LO NLO NNLO



What kind of contributions do we get at NLO?

\ . Divergences are present
{ E in both real and virtual
_ > v diagrams.
,' 200, Cr dE dO They arise when an
T ~ FE @ emission has a small

energy (£ < 1) ora

N A VIRTUAL small angle (0 < 1).

In dim-reg, this brings

- 20.Cp dE d6 1/&* for each order in a..
I 1 E 6




What a NLO calculation gives you

LO (2-particle) tree-level event

with weight  1.00000

PX, py, pz, E= -1.32 -1.38 -49.96 50.00
PX, py, pz, E= 1.32 1.38 49.96 50.00
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What a NLO calculation gives you

LO (2-particle) tree-level event

with weight  1.00000

PX, py, pz, E= -1.32 -1.38 -49.96 50.00
PX, py, pz, E= 1.32 1.38 49.96 50.00

NLO (3-particle) tree-level event
with weight 893.22103, multiplying (alphas/2pi)
PX, py, pz, E= -1.60 -1.75 -49.87 49.93
PX, py, pz, E= 1.31 1.36 49.25 49.29
oz, E= 0.30 0.39 0.62 0.79

NLO (2-particle) virtual subtraction event

with weight -84.49299, multiplying (alphas/2pi)
PX, py, pz, E= -1.32 -1.38 -49.96 50.00
pPX, py, pz, E= 1.32 1.38 49.96 50.00

NLO (2-particle) virtual subtraction event
with weight -808.58646, multiplying (alphas/2pi)
PX, py, pz, E= -1.61 -1.75 -49.94 50.00
pPX, py, pz, E= 1.61 1.75 49.94 50.00

NLO (2-particle) virtual finite event

with weight  2.66667, multiplying (alphas/2pi)
PX, py, pz, E= -1.32 -1.38 -49.96 50.00
PX, py, pz, E= 1.32 1.38 49.96 50.00

LO event (qg)

NLO event, with real emission
~ LO event + extra soft gluon
and large positive weight

NLO event, “virtual” correction
~ LO event
and large negative weight



event weights are ~ probabilities

» real life doesn’t have negative probabilities
» real life doesn’t have (near-)divergent probabilities

» you can evade these problems in perturbation theory if you ask very limited

kinds of questions, i.e. nearly always summing real & virtual divergences
%

» but experiments don’t limit themselves to those kinds of questions

* though there can still be nasty surprises, cf. Chen et al 2102.07607, GPS & Slade 2106.08329



http://arxiv.org/abs/2102.07607
https://arxiv.org/abs/2106.08329
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energy
scale

1 TeV

hard process Key innovation of 2002-’04:
NN/ correct or replace

first step so that perturbative
expansion of hard process +
parton-shower is equivalent to the

true NLO.

Frixione & Webber: MC@NLO
hep-ph/0204244

Nason: POWHEG
hep-ph/0409146

100 GeV

10 GeV

1 GeV

hadronisation
KK



https://arxiv.org/abs/hep-ph/0204244
https://arxiv.org/abs/hep-ph/0409146

Key features of MC@NLO and POWHEG events

» MC@NLO and POWHEG methods, supplemented with parton showers +
hadronisation models, provide NLO-accurate realistic hadron-level events

» they avoid the problem of (near) divergent event weights

» instead the event weights are just *1

This is a big advantage over “pure” NLO

But the event sample doesn’t quite look like a true physical event sample, because
there are still some negative weights



Are negative weights a problem?

Given fraction f of negative-weight events, to reach the same statistical error as for N
unit positive-weight events, you need to generate a larger number of events,

N
(1 =2f)

E.g. for f = 15 % this doubles the required number of events.




NLO state of the art

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

NLO ev. gen. time vs. negative-weight fraction More complex
1 +— A processes tend to have

higher fractions of

: BOx :: negative weights.
1 pp, Vs =13.6TeV dijet 8 8
| mu > 30 GeV or pejec > 10 GeV Mitigation options

1 NNPDF40MC_nlo as 01180

often trade

POWHEG_BOX 5 off negative weight
'\‘\. fraction v. generation

time.

Mac M2 Pro, gfortran 14.2, Apple clang 16.0.0

105 LV ] ———ri— ... Problem usually worse
0.0 10 10 0.1 1 for NNLO event
fraction of negative-weight events generation



https://arxiv.org/abs/0709.2085

NLO state of the art
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step-0 (s) step-1 (s) ‘ p-(s) B gati
(grid setup) (integration) § (generation) S weights
pp — ete”
default 1 14 147 7.1%
2 x 2 x 1 folding 1 33 258 21% |
4 x 4 x 1 folding 1 114 781 1.8%
Born spreading 113 30 189 2.0% &
pp — W7
default 10 604 2013 24.2%
2 x 2 x 1 folding 10 1265 5160 13.2%
4 x 4 x 1 folding 7 2803 16020 9.0% 1
Born spreading 355 645 - 188% |

2226

Frederix & Torrielli
2310.04160

wall times for 1

million events
ona l12-core17-8700K

@ 3.7 GHz desktop
machine


https://arxiv.org/abs/2310.04160

Some LHC experiments’ statements on negative weights and machine learning

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» ATLAS 2211.01136: “To avoid the use of negative weights present in the nominal

NLO sample in the training of the multivariate discriminant used to separate SM ¢ttt
events from background [...], a sample was produced with similar generator
settings, but at LO.”

» CMS 2411.03023: “However, the binary cross-entropy given by Eq. (2), can become
negatively unbounded for negative event weights, making the classification task
potentially impossible”

» ATLAS 2412.15123: “Since XGBoost [ML framework]| cannot handle negative-
weight events, the absolute value of each event weight is used.”



http://arxiv.org/abs/2211.01136
http://arxiv.org/abs/2411.03023
http://arxiv.org/abs/2412.15123

other work trying to reduce negative weight fractions (+ further refs below)

K. Danziger, 5. Hoche and F. Siegert, Reducing negative weights in Monte Carlo event
generation with Sherpa, 2110.15211.

J. R. Andersen and A. Maier, Unbiased elimination of negative weights in Monte Carlo
samples, Fur. Phys. J. C' 82 (2022) 433, [2109.07851].

J. R. Andersen, A. Maier and D. Maitre, Efficient negative-weight elimination in large
high-multiplicity Monte Carlo event samples, Fur. Phys. J. C' 83 (2023) 835, [2303.15246|.

J. R. Andersen, A. Cueto, S. P. Jones and A. Maier, A Cell Resampler study of Negative
Weights in Multi-jet Merged Samples, 2411.11651.

B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweighting with preserved
uncertainties, Phys. Rev. D 102 (2020) 076004, 2007 .11586].

E.g. “We have demonstrated that the fraction of negative event weights in existing large high-multiplicity
samples can be reduced by more than an order of magnitude, whilst preserving predictions for observables
within statistical uncertainties.” [2303.15246]



are we doing our (perturbative QFT) job
properly If we can't deliver guaranteed
positive predictions?




J stages of NLO event generation

1. Generate “Born” event, e.g. gqqg — Z, with an overall NLO-correct normalisation

2. Generate real radiation, e.g. extra gluon, with correct real matrix element

3. Let a parton shower generate all remaining perturbative emission



J stages of NLO event generation

1. Generate “Born” event, e.g. qq — Z, with an overall NLO-correct normalisation

2. Generate real radiation, e.g. extra gluon, with correct real matrix element

3. Let a parton shower generate all remaining perturbative emission

1 + O(a,) O(a,)

NLO event Generation of first
normalisation emission

MC@NLO can be negative can be negative

POWHEG* can be negative always positive

*and also the KrkNLO [Jadach et al 1503.06849] and MAcNLOPS [Nason & GPS, 2111.03553] methods
Gavin Salam KITP, March 2025



https://arxiv.org/abs/1503.06849
https://arxiv.org/abs/2111.03553

J stages of NLO event generation

1. Generate “Born” event, e.g. gqqg — Z, with an overall NLO-correct normalisation

2. Generate real radiation, e.g. extra gluon, with correct real matrix element

3. Let a parton shower generate all remaining perturbative emission

l + O(x O(a,)

\)

: 7
E ) 5 y
Vo 2T o W IB 7 V- % /.y

can be negative § can be negative

always positive

can be negative §

. <a - -

*and also the KrkNLO [Jadach et al 1503.06849] and MAcNLOPS [Nason & GPS, 2111.03553] methods



https://arxiv.org/abs/1503.06849
https://arxiv.org/abs/2111.03553

NLO Born normalisation, inclusive over subsequent branching

Born +NLO norm. = Born  + 1-loop virtual + real
(LO + NLO) (LO) (NLO) (NLO)

v v v ¥ Y

B((I)B) — BO(q)B) V(q)B) /R(q)]?n (I)rad) d(I)rad 9

3 dim. of phase space
for one extra emission

relative order o,



NLO Born normalisation, inclusive over subsequent branching

Born +NLO norm. = Born  + 1-loop virtual + real
(LO + NLO) (LO) (NLO) (NLO)

v v v ¥ Y

B((I)B) — BO(q)B) V(q)B) /R(®B7 (I)rad) d(I)rad 9

3 dim. of phase space
for one extra emission

relative order o,

Made explicitly finite with counterterms

counterterm counterterm

(integrated) (differential)

v v

B(®5) = Bo(®5) + V' (@5) + Coa(@5) + [ [R(®) = C(®)] dPras
-

relative order o




How does it work In practice?

» Choose a Born phase space point @, randomly

» Instead of accurately evaluating the d®_, , integral, choose a random real phase space
point ®@_, ; and use that to get a “single-point Monte Carlo” estimate for the integral

B(CI)B) = Bo(Pp) + V(Pp) + Cint (Pp) + / R(®) — C(P)] dPraq,
N ————————————————

relative order o,

> accept with probability | B|/max, event weight is sign of B



(Bo+V+C+integrand)/Bg

= Bo(®p) + V(PB) + Cint (PB) + / R(P) — C(P)] dPraq,

*  NLO (default)
LO

O 01

02 03 04 05 06 0.7 08 0.9
E=2Ek/\/S

1

each point = one Born
phase space choice and
one radiation phase space
choice

Plotted as a function of
one of the 3 real radiation
phase space variables

Result should be
1 + O(a)

But sometimes coeflicient

in front of a, is large and
result is negative



B(®p) = Bo(®Pp) + V(Pg) + Cint (Pp) + / R(P) — C(P)] dPraq;

L | ° NLO (default) o L reweighting of integration
" [ = NLO (powg =-0.5) | |

variables can help*

But still some negative-
weight events and
reweighting not always
easy or successful

* recent proposals can be
viewed as doing something
similar: “Born spreading”

| | | | | | | - | Frederix & Torrielli,

2 1 0 a1 §e F 2310.04160] and “ARCANE”

O 01 02 03 04 05 06 0.7 08 09 1 [Shyamsunda, 2502.08052,
g =2Ey/Vs 2502.08053]

(Bo+V+C+integrand)/Bg



https://arxiv.org/abs/2310.04160
http://arxiv.org/abs/2502.08052
http://arxiv.org/abs/2502.08053

Key guestion

» Can you evaluate the following integral fast & reliably, and be both positive and
NLO accurate

B(®p) = Bo(®p) + / R(®) — O(®)] dbyag.



Could we just discard the negative events?

raw distribution of weights
] ': | — ] How do you guarantee

10000 f .................... .................... .................... o . that what you are

| | | | | discarding is genuinely
beyond the NLO order

you’re trying to control?

E.g. in one toy example
discarding negative-
weight events would give

a spurious o’

contribution




Core idea: map the integral to an event-by event integer

discretised distribution of weights

10000
this can be done in a way
1000 that the sum over the
distribution gives the
exact original answer
100
10



llustrate algorithm for one dimension of real phase space (ki)

Start with

0.2 » normalisation ng = 1

> k. at max allowed value
M = overestimate of max(R, C) ~ «

0.15
C(D,. ) = differential counterterm ~ ‘
R ——

Run the following loop:

» From In k, subtract a random

0.1 amount sampled from e~ M/Boln Vk;
. o |[R—C|
R(D,. ) » With probability r < Y
0.05 = real matrix element ~ «, |
» ifR>C:ng = np+ 1,
0 — — » fR<C:ng— ng—1
0.01 0.1 1

(Drad —> kt [arb. UnitS]
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llustrate algorithm for one dimension of real phase space (ki)

Start with

0.2 » normalisation ng = 1

> k. at max allowed value

Run the following loop:

0.15
» From In k, subtract a random
0.1 amount sampled from e~ M/Boln Vk;
» With probability r < lRA;Cl

0.05
» ifR>C:ng = np+ 1,

(I)rad —> kt [arb. UnitS]



llustrate algorithm for one dimension of real phase space (ki)

0.25 ——————— — ] "
- tart wit
ng =1
» normalisation ng = 1
0.2 _
> k. at max allowed value
0.15 [ b
( ng then multiplies Born matrix element By(®p) . random
0.1 . m o—M/ByIn 1k,
(np) is exactly equalto 1 + | (R — C)/B,d®, 4 R—C|
<
0.05 ] = T WAL 11t SN e TILe Iy WL M
’ | » fR>C:ng — ng+ 1,
oL — e > fR<Cing o ny— 1
0.01 0.1 1

® ., — ki [arb. units]



Robust positivity with NLO accuracy

discretised distribution of weights

Now if you discard
negative-weight events
you have a guarantee that
you only change the
result at NNLO or beyond

10000

1000 |}

100 Because each decrement

of ny costs a power of a,

10




Robust positivity with NLO accuracy N3LO

discretised distribution of weights

Multiply M, R, C in the
10000 | algorithm by factor p
' (here p = 2)
1
1000 k Increment ny by i;

Algorithm gives exactly

100 | the same (np)

Keeping only positive-
weight events changes

10 integral by just a’*




This Is a “foundation™ algorithm — can be adapted in many ways

» ESME = Exponentiated Subtraction for Mat

» Our implementation actually uses a variant

ching Events

that handles real emissions and NLO

normalisation simultaneously (more efficient, only a bit more complex)

Algorithm Stream 1 (ESME) Born + NLO rejection

10:
11:
12:

1
2
3
4
D:
6
7
8
9

Algorithm Stream 2 (ESME) NLO addition

. Generate Born event according to B¢ distribution and set v = vpax

. while v > v, do

generate next v and ®9 according to Sudakov with density p(v)dInwv, Eq. (3.6)
generate random number 0 < r < 1

if r > C(®)/M(®P): veto emission

else if r > R(®)/M(®): return reject event

else: accept emission and return continue shower, accept event
else

return accept event 192

1
2
3
4:
if C(®) > R(®) then 5.
§
7
8
9

if > C(®)/M(P): veto emission 10:
else: accept emission and return continue shower, accept event 11:

. Generate Born event according to B¢ (or By) distribution and set v = vyax

. while v > v, do

generate next v and ®5 according to Sudakov with density p(v)dInwv, Eq. (3.6)
generate random number 0 < r < 1

if C(®) > R(®) then

if r > R(®)/M(P): veto emission

else: return reject event

else

if r > R(®)/M(P): veto emission

else if r > C(®)/M(®P): accept emsn, return continue shower, accept event

else: return reject event

. return reject event




Does ESME give the correct answer? — Yes

pp->Zly  -ete~,Vs=13.6 TeV

500 _ pr,>27 GeV, [n| <2.5,66<m; <116 GeV -
S 150} : Comparison to exact NLO
5 Look *-- LO MCFM :
o ; —— NLO MCFM
% ; —— PGg,, -0 ESME
50 -
: m—— PG,BPS=O-5 ESME
—— PGg,.—o dBNLO
0 —
1.2F -

Ratio to exact NLO

Check of NLO coefhlicient




s ESME fast enough?

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

NLO ev. gen. time vs. negative-welight fraction . :
J J J » positive definite by

7 .
pp, VS =13.6TeV construction
pp-Z/y =L 1=, my>50 GeV
NNPDF40MC_nlo_as_01180 > turns out to be ~4X

_3 _
10 : faster than fastest of

P

OWHEG. Box public NLO tools
(POWHEG-Boxv2)*

» NB: this is a simple
process (Drell-Yan)
— timing more

1074 o rreemme—

by ~ Mac M2 Pro, gfortran 14.2, Apple clang 16.0.0 critical for more
| T T T T T ] ' ' T T T T T ]
0.0 103 10-2 complex processes

fraction of negative-weight events * with some effort having gone into

optimising it



Conclusions

» Positivity can be built into NLO calculations

» Price to pay is a change of higher terms beyond NLO

» Underlying algorithms are simple, should be possible for other groups to try them
out, also for more complex processes than the ones we studied

» Key step on path to making pQFT predictions simultaneously accurate and physical






Algorithm 1 General algorithm to convert NLO subtraction integral to integer

1:
2:
3:

4
D
0:
7
3

Set ng = 1 and v = Vyyax

while v > v, do

generate next v and ®, according to Sudakov with density p(v)dInv, Eq. (3.6)

generate random number 0 < r < 1

if r < |R(®) — C(®)|/M(P) then
if R(®) > C(P): ng = ng+ 1
else: ng — Ng — 1

. return ng

ng then multiplies Born matrix element B,(®p)

R—-C

(ng) is exactly equal to 1 + / AdP,.q

By
_/_/

order o,

d
d(I)rad ? Ud(I)Q

AW =es |- [ Dp)
M (P

p(v) = [ ez Bo((@]i)

M(®) > max|R(®), C(®)]




Algorithm 1 General algorithm to convert NLO subtraction integral to integer

1: Set ng =1 and v = Vyyax

2: while v > vy, do

3: generate next v and ®5 according to Sudakov with density p(v)dInwv, Eq. (3.6)

4: enerte rando number O <r 1

5 [ifr <[R(®) - C(2)]/M(2 ) then | 1o, 1 — o,

6: § if R(®) > C(P): ng = ng+1 O(a) v W
o ese el A =ew |~ [ )
8: return Ny ’ °

ng then multiplies Born matrix element B,(®p)

(ng) is exactly equal to 1 + / RB_ qu)md
0
_/_/

order o

M(®) > max[R(®), C()]




— —

ESME, R < C ESME, R > C

stream 1 stream 2 | stream 1 stream 2
( T ) | | ( T ) |

| | |

| | |

| ! > veto emsn |

veto emsn < : . :
> veto emsn ! - vetoemsny g | |

| : M A |

. Cc | | | > accept evt

. M | : . C ) !
reject evt< - ) | : Py e n |
ca TS : . | :

accept evt < > reject evt : | accept evt < p reject evt :
| | |

0L : : gL |

| | |

Figure 1: Simple illustration of the different possible actions in the two streams of the

ESM]

A algorithm with joint reals and subtractions. The actions are shown separately for

the cases R(®) < C'(®) (left) and R(®) > C'(P) (right). In each case, when summing the
two streams, one sees that the “accept evt” action occurs with total weight R/M. One

can also verify that the contribution to the total event rate change relative to the B¢
normalisation is (R — C')/M. Recall that the default action in stream 1 (2) is to accept
(reject) the event if the shower scale reaches vy,;, — only when the action is different from

the stream’s default is the total event rate affected.
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Figure 11: PanScales NLL+NLO matched showers, interfaced with Pythia [103], as com-

pared to 13 TeV QED-Born di-lepton data from the ATLAS collaboration [104]. The

left-hand plot is for the di-lepton transverse momentum distribution, while the right-hand

plot is for the ¢; variable [105], cf. Eq. (5.1). In the Pythia interface, we include Pythia’s
primordial transverse momentum but not hadronisation, QED effects or multi-parton in-

teractions.
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